Olivier Dubois

Affiliations:
  • CNRS, University Pierre et Marie Curie, France


According to our database1, Olivier Dubois authored at least 19 papers between 1989 and 2011.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2011
Second moment method for a family of boolean CSP
CoRR, 2011

2006
An Efficient Approach to Solving Random <i>k</i>-satProblems.
J. Autom. Reason., 2006

2005
Regular Random <i>k</i>-SAT: Properties of Balanced Formulas.
J. Autom. Reason., 2005

2004
Additive Decompositions, Random Allocations, and Threshold Phenomena.
Comb. Probab. Comput., 2004

2003
Reconstructing (h, v)-convex 2-dimensional patterns of objects from approximate horizontal and vertical projections.
Theor. Comput. Sci., 2003

Typical random 3-SAT formulae and the satisfiability threshold
Electron. Colloquium Comput. Complex., 2003

Approximating The Satisfiability Threshold For Random K-Xor-Formulas.
Comb. Probab. Comput., 2003

kcnfs: An Efficient Solver for Random k-SAT Formulae.
Proceedings of the Theory and Applications of Satisfiability Testing, 2003

2002
The 3-XORSAT Threshold.
Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS 2002), 2002

2001
Editorial.
Theor. Comput. Sci., 2001

Upper bounds on the satisfiability threshold.
Theor. Comput. Sci., 2001

A backbone-search heuristic for efficient solving of hard 3-SAT formulae.
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, 2001

The Non-existence of (3, 1, 2)-Conjugate Orthogonal Idempotent Latin Square of Order 10.
Proceedings of the Principles and Practice of Constraint Programming, 2001

1999
Length of Prime Implicants and Number of Solutions of Random CNF Formulae.
Theor. Comput. Sci., 1999

1993
SAT versus UNSAT.
Proceedings of the Cliques, 1993

1991
Probabilistic approach to the Satisfiability Problem.
Theor. Comput. Sci., 1991

Counting the Number of Solutions for Instances of Satisfiability.
Theor. Comput. Sci., 1991

1990
On the r, s-SAT satisfiability problem and a conjecture of Tovey.
Discret. Appl. Math., 1990

1989
Number of solutions of Satisfiability Instances - Applications to Knowledge Bases.
Int. J. Pattern Recognit. Artif. Intell., 1989


  Loading...