Olivier Desjardins
Orcid: 0000-0001-6477-6658
According to our database1,
Olivier Desjardins
authored at least 24 papers
between 2008 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
J. Comput. Phys., 2024
2023
SIAM J. Sci. Comput., October, 2023
J. Comput. Phys., July, 2023
2022
General, robust, and efficient polyhedron intersection in the Interface Reconstruction Library.
J. Comput. Phys., 2022
2021
J. Comput. Phys., 2021
Traction open boundary condition for incompressible, turbulent, single- or multi-phase flows, and surface wave simulations.
J. Comput. Phys., 2021
2020
2019
J. Comput. Phys. X, 2019
A volume of fluid framework for interface-resolved simulations of vaporizing liquid-gas flows.
J. Comput. Phys., 2019
2018
2017
A mass and momentum conserving unsplit semi-Lagrangian framework for simulating multiphase flows.
J. Comput. Phys., 2017
Improving particle drag predictions in Euler-Lagrange simulations with two-way coupling.
J. Comput. Phys., 2017
A reformulation of the conservative level set reinitialization equation for accurate and robust simulation of complex multiphase flows.
J. Comput. Phys., 2017
2015
J. Comput. Phys., 2015
2014
A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the volume-of-fluid (VOF) method.
J. Comput. Phys., 2014
J. Comput. Phys., 2014
2013
A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows.
J. Comput. Phys., 2013
J. Comput. Phys., 2013
2010
A ghost fluid, level set methodology for simulating multiphase electrohydrodynamic flows with application to liquid fuel injection.
J. Comput. Phys., 2010
2009
J. Comput. Phys., 2009
2008
An accurate conservative level set/ghost fluid method for simulating turbulent atomization.
J. Comput. Phys., 2008
J. Comput. Phys., 2008
High order conservative finite difference scheme for variable density low Mach number turbulent flows.
J. Comput. Phys., 2008