Noémie Moreau

According to our database1, Noémie Moreau authored at least 9 papers between 2019 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
GLOMNET: A Hover Deep Learning Model for Glomerulus Instance Segmentation.
Proceedings of the IEEE International Symposium on Biomedical Imaging, 2024

2022
Utilisation de l'apprentissage profond pour la segmentation et la caractérisation des images TEP/TDM FDG dans le cadre du cancer du sein métastatique. (Deep learning methods to segment and characterize PET/CT images in the context of metastatic breast cancer).
PhD thesis, 2022

Influence of inputs for bone lesion segmentation in longitudinal <sup>18</sup>F-FDG PET/CT imaging studies.
Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, 2022

2021
Deformable Image Registration with Deep Network Priors: a Study on Longitudinal PET Images.
CoRR, 2021

Automatic classification of benign and malignant kidney masses using radiomics. A retrospective study exploiting the KiTS19 dataset.
Proceedings of the Medical Imaging 2021: Image Processing, Online, February 15-19, 2021, 2021

Comparison between threshold-based and deep learning-based bone segmentation on whole-body CT images.
Proceedings of the Medical Imaging 2021: Computer-Aided Diagnosis, 2021

2020
Deep learning approaches for bone and bone lesion segmentation on 18FDG PET/CT imaging in the context of metastatic breast cancer<sup>*</sup>.
Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, 2020

Combining Superpixels and Deep Learning Approaches to Segment Active Organs in Metastatic Breast Cancer PET Images<sup>*</sup>.
Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, 2020

2019
Kidney tumor segmentation using an ensembling multi-stage deep learning approach. A contribution to the KiTS19 challenge.
CoRR, 2019


  Loading...