Noboru Hamada
According to our database1,
Noboru Hamada
authored at least 23 papers
between 1975 and 2000.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2000
1999
The Nonexistence of Quaternary Linear Codes With Parameters [243, 5, 181], [248, 5, 185] and [240, 5, 179].
Ars Comb., 1999
1998
The Nonexistence of Ternary [231, 6, 153] Codes.
Ars Comb., 1998
1997
A Necessary and Sufficient Condition for the Existence of Some Ternary [n, k, d] Codes Meeting the Greismer Bound.
Des. Codes Cryptogr., 1997
1996
1995
A characterization of some {3v<sub>µ+1</sub>, 3v<sub>µ</sub>; k-1, q}-minihypers and some [n, k, q<sup>k-1</sup> - 3q<sup>µ</sup>; q]-codes (k >= 3, q >= 5, 1 <= µ < k-1) meeting the Griesmer bound.
Discret. Math., 1995
1993
Characterization of {2(q+1)+2, 2;t, q}-minihypers in PG(t, q) (t>=3, qepsilon{3, 4}).
Discret. Math., 1993
A characterization of some [n, k, d;q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry.
Discret. Math., 1993
Discret. Appl. Math., 1993
1992
A characterization of some {2u<sub>alpha+1</sub>+u<sub>gamma+1</sub>, 2u<sub>alpha</sub>+u<sub>gamma</sub>; k-1, 3}- minihypers and some (n, k, 3<sup>k-1</sup> -2·3<sup>alpha</sup>-3<sup>gamma</sup>; 3)-codes (k>=3, 0<=alpha<gamma<k-1) meeting the Griesmer bound.
Discret. Math., 1992
On the Construction of [q<sup>4</sup> + q<sup>2</sup> - q, 5, q<sup>4</sup> - q<sup>3</sup> + q<sup>2</sup> - 2q; q]-Codes Meeting the Griesmer Bound.
Des. Codes Cryptogr., 1992
1991
A characterization of {2v<sub>alpha+1</sub> + 2v<sub>beta+1</sub>, 2v<sub>alpha</sub> + 2v<sub>beta</sub>; t, q}- minihypers in PG(t, q) (t >= 2, q >= 5 and 0 >= alpha < beta < t) and its applications to error-correcting codes.
Discret. Math., 1991
1990
Eur. J. Comb., 1990
1989
Characterization of {<i>v</i><sub>μ+1</sub> + 2<i>v</i><sub>μ</sub>, <i>v</i><sub>μ</sub> + 2<i>v</i><sub>μ - 1</sub>;<i>t</i>, <i>q</i>}-min · hypers and its applications to error-correcting codes.
Graphs Comb., 1989
Characterization of {(<i>q</i> + 1) + 2, 1;<i>t, q</i>}-min · hypers and {2(<i>q</i> + 1) + 2, 2; 2, <i>q</i>}-min · hypers in a Finite projective geometry.
Graphs Comb., 1989
A survey of recent works with respect to a characterization of an (n, k, d; q)-code meeting the Griesmer bound using a min·hyper in a finite projective geometry.
Discret. Math., 1989
1988
Characterization of {2(q+1)+2, 2;t, q}- min·hypers in PG(t, q) (t>=3, q>=5) and its applications to error-correcting codes.
Discret. Math., 1988
1982
Construction of Optimal Linear Codes Using Flats and Spreads in a Finite Projective Geometry.
Eur. J. Comb., 1982
1981
The Geometric Structure and the p-Rank of an Affine Triple System Derived from a Nonassociative Moufang Loop with the Maximum Associative Center.
J. Comb. Theory A, 1981
1978
On the Block Structure of BIB Designs with Parameters v = 22, b = 33, r = 12, k = 8, and lambda = 4.
J. Comb. Theory A, 1978
J. Comb. Theory A, 1978
1975
Inf. Control., June, 1975