Nili Guttmann-Beck

According to our database1, Nili Guttmann-Beck authored at least 21 papers between 1997 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Decomposing the feasibility of Clustered Spanning Tree by Paths.
Discret. Appl. Math., 2024

On partitioning minimum spanning trees.
Discret. Appl. Math., 2024

2023
Achieving feasibility for clustered traveling salesman problems using PQ-trees.
Networks, September, 2023

2022
Erratum to "Two dimensional maximum weight matching using Manhattan topology" [Oper. Res. Lett. 50 (3) (2022) 281-286].
Oper. Res. Lett., 2022

Two dimensional maximum weight matching using Manhattan topology.
Oper. Res. Lett., 2022

2021
Vertices removal for feasibility of clustered spanning trees.
Discret. Appl. Math., 2021

2019
FOM - a MATLAB toolbox of first-order methods for solving convex optimization problems.
Optim. Methods Softw., 2019

Clustered Spanning Tree - Conditions for Feasibility.
Discret. Math. Theor. Comput. Sci., 2019

2018
Approximation Algorithms for Not Necessarily Disjoint Clustered TSP.
J. Graph Algorithms Appl., 2018

2012
Series-parallel orientations preserving the cycle-radius.
Inf. Process. Lett., 2012

The (K, k)-capacitated spanning tree problem.
Discret. Optim., 2012

2011
On coloring the arcs of a tournament, covering shortest paths, and reducing the diameter of a graph.
Discret. Optim., 2011

Minimum diameter and cycle-diameter orientations on planar graphs
CoRR, 2011

2010
The CoMirror algorithm for solving nonsmooth constrained convex problems.
Oper. Res. Lett., 2010

On two restricted ancestors tree problems.
Inf. Process. Lett., 2010

The (<i>K</i>, <i>k</i>)-Capacitated Spanning Tree Problem.
Proceedings of the Algorithmic Aspects in Information and Management, 2010

2000
Approximation Algorithms with Bounded Performance Guarantees for the Clustered Traveling Salesman Problem.
Algorithmica, 2000

Approximation Algorithms for Minimum <i>K</i>-Cut.
Algorithmica, 2000

1998
Approximation Algorithms for Min-sum p-clustering.
Discret. Appl. Math., 1998

Approximation Algorithms for Minimum Tree Partition.
Discret. Appl. Math., 1998

1997
Approximation Algorithms for Min-Max Tree Partition.
J. Algorithms, 1997


  Loading...