Nilay Kumar Mondal

Orcid: 0000-0002-7999-0232

According to our database1, Nilay Kumar Mondal authored at least 8 papers between 2021 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Optimal Binary Few-Weight Codes Using a Mixed Alphabet Ring and Simplicial Complexes.
IEEE Trans. Inf. Theory, July, 2024

Maximum distance separable repeated-root constacyclic codes over $\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}$ with respect to the Lee distance.
Appl. Algebra Eng. Commun. Comput., July, 2024

Symbol-pair distance of some repeated-root constacyclic codes of length p<sup>s</sup> over the Galois ring ${{\, \mathrm{GR}\, }}(p^a, m)$.
Appl. Algebra Eng. Commun. Comput., 2024

2023
Two classes of few-Lee weight Z2[u]-linear codes using simplicial complexes and minimal codes via Gray map.
Discret. Math., December, 2023

2022
Lee distance distribution of repeated-root constacyclic codes over $$\hbox {GR}\left( 2^e,m\right) $$ and related MDS codes.
J. Appl. Math. Comput., December, 2022

A class of few-Lee weight Z<sub>2</sub>[u]-linear codes using simplicial complexes and minimal codes via Gray map.
CoRR, 2022

2021
Lee Distance of (4z - 1)-Constacyclic Codes of Length 2<sup>s</sup> Over the Galois Ring GR(2<sup>a</sup>, m).
IEEE Commun. Lett., 2021

Lee distance of cyclic and (1 + <i>uγ</i>)-constacyclic codes of length 2<sup><i>s</i></sup> over F2m+uF2m.
Discret. Math., 2021


  Loading...