Nicholas J. Cavenagh

Orcid: 0000-0002-9151-3842

According to our database1, Nicholas J. Cavenagh authored at least 49 papers between 1998 and 2023.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
Mutually orthogonal frequency rectangles.
Discret. Math., December, 2023

2022
Mutually orthogonal cycle systems.
Ars Math. Contemp., November, 2022

2021
Maximal sets of mutually orthogonal frequency squares.
Des. Codes Cryptogr., 2021

2020
Globally simple Heffter arrays H(n;k) when k≡0, 3(mod4).
Discret. Math., 2020

Mutually Orthogonal Binary Frequency Squares.
Electron. J. Comb., 2020

2019
The existence of square non-integer Heffter arrays.
Ars Math. Contemp., 2019

2018
Lower Bounds on the Sizes of Defining Sets in Full n-Latin Squares and Full Designs.
Graphs Comb., 2018

Balanced diagonals in frequency squares.
Discret. Math., 2018

2017
Subcubic trades in Steiner triple systems.
Discret. Math., 2017

Latin Squares with No Transversals.
Electron. J. Comb., 2017

Orthogonal Trades in Complete Sets of MOLS.
Electron. J. Comb., 2017

2016
Critical Sets of Full n-Latin Squares.
Graphs Comb., 2016

On the distances between Latin squares and the smallest defining set size.
Electron. Notes Discret. Math., 2016

2015
Decomposing Graphs of High Minimum Degree into 4-Cycles.
J. Graph Theory, 2015

Decomposing Dense Bipartite Graphs into 4-Cycles.
Electron. J. Comb., 2015

Maximal Partial Latin Cubes.
Electron. J. Comb., 2015

On the chromatic index of Latin squares.
Contributions Discret. Math., 2015

2013
Induced Subarrays of Latin Squares Without Repeated Symbols.
Electron. J. Comb., 2013

2012
Nonextendible Latin Cuboids.
SIAM J. Discret. Math., 2012

Decomposing complete equipartite graphs into odd square-length cycles: Number of parts even.
Discret. Math., 2012

Complete sets of metamorphoses: Twofold 4-cycle systems into twofold 6-cycle systems.
Discret. Math., 2012

Identifying flaws in the security of critical sets in latin squares via triangulations.
Australas. J Comb., 2012

2011
Multi-latin squares.
Discret. Math., 2011

2010
Path and cycle decompositions of complete equipartite graphs: 3 and 5 parts.
Discret. Math., 2010

On the number of transversals in Cayley tables of cyclic groups.
Discret. Appl. Math., 2010

Decomposing Complete Equipartite Graphs into Short Odd Cycles.
Electron. J. Comb., 2010

Avoidable Partial Latin Squares Of Order 4m+1.
Ars Comb., 2010

2009
On completing three cyclically generated transversals to a latin square.
Finite Fields Their Appl., 2009

Path and cycle decompositions of complete equipartite graphs: Four parts.
Discret. Math., 2009

2008
The cycle structure of two rows in a random Latin square.
Random Struct. Algorithms, 2008

Planar Eulerian triangulations are equivalent to spherical Latin bitrades.
J. Comb. Theory A, 2008

Sparse Graphs which Decompose into Closed Trails of Arbitrary Lengths.
Graphs Comb., 2008

Minimal homogeneous Steiner 2-(v, 3) trades.
Discret. Math., 2008

When is a partial Latin square uniquely completable, but not its completable product?
Discret. Math., 2008

Latin bitrades derived from groups.
Discret. Math., 2008

2007
On The Spectrum Of Critical Sets In Back Circulant Latin Squares.
Ars Comb., 2007

2006
Minimal homogeneous latin trades.
Discret. Math., 2006

Edge-Magic Group Labellings of Countable Graphs.
Electron. J. Comb., 2006

A lower bound for the size of a critical set in the back circulant latin square.
Australas. J Comb., 2006

2005
3-Homogeneous latin trades.
Discret. Math., 2005

4-homogeneous latin trades.
Australas. J Comb., 2005

2004
On a generalization of the Oberwolfach problem.
J. Comb. Theory A, 2004

Constructing and deconstructing latin trades.
Discret. Math., 2004

2003
Latin Trade Algorithms and the Smallest Critical Set in a Latin Square.
J. Autom. Lang. Comb., 2003

2002
Further decompositions of complete tripartite graphs into 5-cycles.
Discret. Math., 2002

A new bound on the size of the largest 2-critical set in a latin square.
Australas. J Comb., 2002

2000
Decompositions of Complete Multipartite Graphs into Cycles of Even Length.
Graphs Comb., 2000

On decomposing complete tripartite graphs into 5-cycles.
Australas. J Comb., 2000

1998
Decompositions of complete tripartite graphs into k-cycles.
Australas. J Comb., 1998


  Loading...