Mustapha Lebbah

Orcid: 0000-0001-7245-6371

Affiliations:
  • University of Paris 13, France


According to our database1, Mustapha Lebbah authored at least 146 papers between 2000 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Exploring accuracy and interpretability trade-off in tabular learning with novel attention-based models.
Neural Comput. Appl., October, 2024

Game Theory Meets Statistical Mechanics in Deep Learning Design.
CoRR, 2024

Manual Verbalizer Enrichment for Few-Shot Text Classification.
CoRR, 2024

OneEncoder: A Lightweight Framework for Progressive Alignment of Modalities.
CoRR, 2024

Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label Environments: An Empirical Study on Tabular Data Streaming for Fraud Detection.
CoRR, 2024

Adaptative Context Normalization: A Boost for Deep Learning in Image Processing.
CoRR, 2024

Unsupervised Adaptive Normalization.
CoRR, 2024

LightMDETR: A Lightweight Approach for Low-Cost Open-Vocabulary Object Detection Training.
CoRR, 2024

Supervised Batch Normalization.
CoRR, 2024

Cluster-Based Normalization Layer for Neural Networks.
CoRR, 2024

Context-Based Multimodal Fusion.
CoRR, 2024

Distributed Collapsed Gibbs Sampler for Dirichlet Process Mixture Models in Federated Learning.
Proceedings of the 2024 SIAM International Conference on Data Mining, 2024

Distributed MCMC Inference for Bayesian Non-parametric Latent Block Model.
Proceedings of the Advances in Knowledge Discovery and Data Mining, 2024

One-Pass Generation of Multivariate Time Series through Conditional Multivariate Modeling.
Proceedings of the International Joint Conference on Neural Networks, 2024

UAN: Unsupervised Adaptive Normalization.
Proceedings of the International Joint Conference on Neural Networks, 2024

AESim: A Data-Driven Aircraft Engine Simulator.
Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, 2024

Normalisation Contextuelle : Une Nouvelle Approche pour la Stabilité et l'Amélioration des Performances des Réseaux de Neurones.
Proceedings of the Extraction et Gestion des Connaissances, 2024

Enhancing Few-Shot Topic Classification with Verbalizers. a Study on Automatic Verbalizer and Ensemble Methods.
Proceedings of the 2024 Joint International Conference on Computational Linguistics, 2024

2023
Regions of interest selection in histopathological images using subspace and multi-objective stream clustering.
Vis. Comput., April, 2023

Parallel Computation of Multi-Slice Clustering of Third-Order Tensors.
CoRR, 2023

Self-Reinforcement Attention Mechanism For Tabular Learning.
CoRR, 2023

Epigenetics Algorithms: Self-Reinforcement-Attention mechanism to regulate chromosomes expression.
CoRR, 2023

DBSCAN of Multi-Slice Clustering for Third-Order Tensors.
CoRR, 2023

Multiway clustering of 3-order tensor via affinity matrix.
CoRR, 2023

Context Normalization for Robust Image Classification.
CoRR, 2023

Selecting the Number of Clusters K with a Stability Trade-off: An Internal Validation Criterion.
Proceedings of the Advances in Knowledge Discovery and Data Mining, 2023

Context Normalization Layer with Applications.
Proceedings of the IEEE International Conference on Data Mining, 2023

Improved Multi-Objective Data Stream Clustering with Time and Memory Optimization.
Proceedings of the Companion Proceedings of the Conference on Genetic and Evolutionary Computation, 2023

Propriétés émergentes du multi-clustering bayésien non paramétrique: Application aux données d'images multivues.
Proceedings of the Extraction et Gestion des Connaissances, 2023

TabSRA: An Attention based Self-Explainable Model for Tabular Learning.
Proceedings of the 31st European Symposium on Artificial Neural Networks, 2023

2022
Functional non-parametric latent block model: A multivariate time series clustering approach for autonomous driving validation.
Comput. Stat. Data Anal., 2022

Transformer-based conditional generative adversarial network for multivariate time series generation.
CoRR, 2022

Improved Multi-objective Data Stream Clustering with Time and Memory Optimization.
CoRR, 2022

Transfer learning from synthetic labels for histopathological images classification.
Appl. Intell., 2022

Emerging properties from Bayesian Non-Parametric for multiple clustering: Application for multi-view image dataset.
Proceedings of the IEEE International Conference on Data Mining Workshops, 2022

2021
Deep embedded self-organizing maps for joint representation learning and topology-preserving clustering.
Neural Comput. Appl., 2021

Subspace data stream clustering with global and local weighting models.
Neural Comput. Appl., 2021

An Evolutionary Computing-Based Efficient Hybrid Task Scheduling Approach for Heterogeneous Computing Environment.
J. Grid Comput., 2021

Multi-Slice Clustering for 3-order Tensor Data.
CoRR, 2021

Experience feedback using Representation Learning for Few-Shot Object Detection on Aerial Images.
Proceedings of the 20th IEEE International Conference on Machine Learning and Applications, 2021

Multi-Slice Clustering for 3-order Tensor.
Proceedings of the 20th IEEE International Conference on Machine Learning and Applications, 2021

A New Nearest Neighbor Median Shift Clustering for Binary Data.
Proceedings of the Artificial Neural Networks and Machine Learning - ICANN 2021, 2021

Multivariate Time Series Multi-Coclustering. Application to Advanced Driving Assistance System Validation.
Proceedings of the 29th European Symposium on Artificial Neural Networks, 2021

A New Subspace Multi-Objective Approach for the Clustering and Selection of Regions of Interests in Histopathological Images.
Proceedings of the IEEE Congress on Evolutionary Computation, 2021

Non-parametric Multivariate Time Series Co-clustering Model Applied to Driving-Assistance Systems Validation.
Proceedings of the Advanced Analytics and Learning on Temporal Data, 2021

2020
A scalable and effective rough set theory-based approach for big data pre-processing.
Knowl. Inf. Syst., 2020

A Survey and Implementation of Performance Metrics for Self-Organized Maps.
CoRR, 2020

Conditional Latent Block Model: a Multivariate Time Series Clustering Approach for Autonomous Driving Validation.
CoRR, 2020

Autonomous Driving Validation with Model-Based Dictionary Clustering.
Proceedings of the Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track, 2020

An Invariance-guided Stability Criterion for Time Series Clustering Validation.
Proceedings of the 25th International Conference on Pattern Recognition, 2020

Multi-objective data stream clustering.
Proceedings of the GECCO '20: Genetic and Evolutionary Computation Conference, 2020

Clustering de séries temporelles par construction de dictionnaire.
Proceedings of the Extraction et Gestion des Connaissances, 2020

Soft Subspace Growing Neural Gas pour le Clustering de Flux de Données.
Proceedings of the Extraction et Gestion des Connaissances, 2020

2019
A distributed approximate nearest neighbors algorithm for efficient large scale mean shift clustering.
J. Parallel Distributed Comput., 2019

An ant-based new clustering model for graph proximity construction.
Int. J. Bio Inspired Comput., 2019

Nearest Neighbor Median Shift Clustering for Binary Data.
CoRR, 2019

A Distributed and Approximated Nearest Neighbors Algorithm for an Efficient Large Scale Mean Shift Clustering.
CoRR, 2019

Soft Subspace Topological Clustering over Evolving Data Stream.
Proceedings of the Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, 2019

Deep Architectures for Joint Clustering and Visualization with Self-organizing Maps.
Proceedings of the Trends and Applications in Knowledge Discovery and Data Mining, 2019

Algorithms for an Efficient Tensor Biclustering.
Proceedings of the Trends and Applications in Knowledge Discovery and Data Mining, 2019

Soft Subspace Growing Neural Gas for Data Stream Clustering.
Proceedings of the Artificial Neural Networks and Machine Learning - ICANN 2019: Text and Time Series, 2019

Deep Embedded SOM: joint representation learning and self-organization.
Proceedings of the 27th European Symposium on Artificial Neural Networks, 2019

2018
An Instance Based Model for Scalable <i>θ</i>-Subsumption.
Int. J. Artif. Intell. Tools, 2018

Accelerating the Computation of Multi-Objectives Scheduling Solutions for Cloud Computing.
Proceedings of the 8th IEEE International Symposium on Cloud and Service Computing, 2018

A New Micro-Batch Approach for Partial Least Square Clusterwise Regression.
Proceedings of the INNS Conference on Big Data and Deep Learning 2018, 2018

Hierarchical Laplacian Score for unsupervised feature selection.
Proceedings of the 2018 International Joint Conference on Neural Networks, 2018

Nouveau Modèle de Sélection de Caractéristiques basé sur la Théorie des Ensembles Approximatifs pour les Données Massives.
Proceedings of the Extraction et Gestion des Connaissances, 2018

Mean-shift : Clustering scalable et distribué.
Proceedings of the Extraction et Gestion des Connaissances, 2018

A Complete Data Science Work-flow For Insurance Field.
Proceedings of the IEEE International Conference on Big Data (IEEE BigData 2018), 2018

A Generic and Scalable Pipeline for Large-Scale Analytics of Continuous Aircraft Engine Data.
Proceedings of the IEEE International Conference on Big Data (IEEE BigData 2018), 2018

A Distributed Rough Set Theory Algorithm based on Locality Sensitive Hashing for an Efficient Big Data Pre-processing.
Proceedings of the IEEE International Conference on Big Data (IEEE BigData 2018), 2018

2017
Big Data: from collection to visualization.
Mach. Learn., 2017

An Instance Based Model for Scalable Theta -Subsumption.
Proceedings of the 29th IEEE International Conference on Tools with Artificial Intelligence, 2017

Nouveau modèle pour un passage à l'échelle de la 0-subsomption.
Proceedings of the 17ème Journées Francophones Extraction et Gestion des Connaissances, 2017

A distributed rough set theory based algorithm for an efficient big data pre-processing under the spark framework.
Proceedings of the 2017 IEEE International Conference on Big Data (IEEE BigData 2017), 2017

Return of experience on the mean-shift clustering for heterogeneous architecture use case.
Proceedings of the 2017 IEEE International Conference on Big Data (IEEE BigData 2017), 2017

2016
Nearest neighbour estimators of density derivatives, with application to mean shift clustering.
Pattern Recognit. Lett., 2016

A new Growing Neural Gas for clustering data streams.
Neural Networks, 2016

CL-AntInc Algorithm for Clustering Binary Data Streams Using the Ants Behavior.
Proceedings of the Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 20th International Conference KES-2016, 2016

A new Model for Scalable θ-subsumption.
Proceedings of the 26th International Conference on Inductive Logic Programming (Short papers), 2016

GTM Mixture through time for sequential data.
Proceedings of the 2016 International Joint Conference on Neural Networks, 2016

Distributed mean shift clustering with approximate nearest neighbours.
Proceedings of the 2016 International Joint Conference on Neural Networks, 2016

2015
Probabilistic Self-Organizing Map for Clustering and Visualizing non-i.i.d Data.
Int. J. Comput. Intell. Appl., 2015

Clustering Over Data Streams Based on Growing Neural Gas.
Proceedings of the Advances in Knowledge Discovery and Data Mining, 2015

Micro-Batching Growing Neural Gas for Clustering Data Streams Using Spark Streaming.
Proceedings of the INNS Conference on Big Data 2015, 2015

Growing Hierarchical Trees for Data Stream clustering and visualization.
Proceedings of the 2015 International Joint Conference on Neural Networks, 2015

Clustering of Binary Data Sets Using Artificial Ants Algorithm.
Proceedings of the Neural Information Processing - 22nd International Conference, 2015

Modèle de Biclustering dans un paradigme "Mapreduce".
Proceedings of the 15èmes Journées Francophones Extraction et Gestion des Connaissances, 2015

Clustering topologique pour le flux de données.
Proceedings of the 15èmes Journées Francophones Extraction et Gestion des Connaissances, 2015

How to use ants for data stream clustering.
Proceedings of the IEEE Congress on Evolutionary Computation, 2015

2014
Incremental clustering of data stream using real ants behavior.
Proceedings of the 2014 Sixth World Congress on Nature and Biologically Inspired Computing, 2014

SOM Clustering Using Spark-MapReduce.
Proceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, 2014

Feature Group Weighting and Topological Biclustering.
Proceedings of the Neural Information Processing - 21st International Conference, 2014

G-Stream: Growing Neural Gas over Data Stream.
Proceedings of the Neural Information Processing - 21st International Conference, 2014

Détection de nouveautés en utilisant un nouveau score de détection de "groupes-outliers".
Proceedings of the Fouille de Données Complexes, 2014, 2014

Pondération de blocs de variables en bi-partitionnement topologique.
Proceedings of the 14èmes Journées Francophones Extraction et Gestion des Connaissances, 2014

Biclustering using Spark-MapReduce.
Proceedings of the 2014 IEEE International Conference on Big Data (IEEE BigData 2014), 2014

2013
Group Outlier factor: a New Score using Self-Organising Map for Group-Outlier and Novelty Detection.
Int. J. Comput. Intell. Appl., 2013

Clustering using chemical and colonial odors of real ants.
Proceedings of the Fifth World Congress on Nature and Biologically Inspired Computing, 2013

A New Visualization of Group-Outliers in Unsupervised Learning.
Proceedings of the 17th International Conference on Information Visualisation, 2013

Self-organizing trees for visualizing protein dataset.
Proceedings of the 2013 International Joint Conference on Neural Networks, 2013

A new bi-clustering approach using topological maps.
Proceedings of the 2013 International Joint Conference on Neural Networks, 2013

Sélection de variables non supervisée sous contraintes hiérarchiques.
Proceedings of the Extraction et gestion des connaissances (EGC'2013), Actes, 29 janvier, 2013

Nouvelle approche de bi-partitionnement topologique.
Proceedings of the Extraction et gestion des connaissances (EGC'2013), Actes, 29 janvier, 2013

2012
Graph Decomposition Using Self-organizing Trees.
Proceedings of the 16th International Conference on Information Visualisation, 2012

Growing Self-organizing Trees for knowledge discovery from data.
Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), 2012

Novelty Detection Using a New Group Outlier Factor.
Proceedings of the Neural Information Processing - 19th International Conference, 2012

Self-Organizing Map and Tree Topology for Graph Summarization.
Proceedings of the Artificial Neural Networks and Machine Learning - ICANN 2012, 2012

Classification probabiliste non supervisée et visualisation des données séquentielles.
Proceedings of the Extraction et gestion des connaissances (EGC'2012), Actes, janvier 31, 2012

Clustering multi-niveaux de graphes : hiérarchique et topologique.
Proceedings of the Extraction et gestion des connaissances (EGC'2012), Actes, janvier 31, 2012

Détection de groupes outliers en classification non supervisée.
Proceedings of the Extraction et gestion des connaissances (EGC'2012), Actes, janvier 31, 2012

Automatic Group-Outlier Detection.
Proceedings of the 20th European Symposium on Artificial Neural Networks, 2012

2011
A New Way for Hierarchical and Topological Clustering.
Proceedings of the Advances in Knowledge Discovery and Management, 2011

Modèles de mélanges topologiques pour la classification de données catégorielles et mixtes.
Proceedings of the Fouille de données complexes. Complexité liée aux données multiples, 2011

Self-Organizing Tree Using Artificial Ants.
J. Inf. Technol. Res., 2011

A Self-Organizing Map for mixed continuous and Categorical Data.
Int. J. Comput., 2011

Probabilistic Self-Organizing Maps for multivariate sequences.
Proceedings of the 2011 International Joint Conference on Neural Networks, 2011

SOS-HMM: Self-Organizing Structure of Hidden Markov Model.
Proceedings of the Artificial Neural Networks and Machine Learning - ICANN 2011, 2011

Pondération et classification simultanée de données binaires et continues.
Proceedings of the Extraction et gestion des connaissances (EGC'2011), 2011

Structuration automatique des flux télévisuels par apprentissage non supervisé des répétitions.
Proceedings of the Extraction et gestion des connaissances (EGC'2011), 2011

Une nouvelle approche visuelle pour la classification hiérarchique et topologique.
Proceedings of the Extraction et gestion des connaissances (EGC'2011), 2011

2010
Visualization and clustering of categorical data with probabilistic self-organizing map.
Neural Comput. Appl., 2010

Topographic under-sampling for unbalanced distributions.
Proceedings of the International Joint Conference on Neural Networks, 2010

Topological Hierarchical Tree Using Artificial Ants.
Proceedings of the Neural Information Processing. Theory and Algorithms, 2010

Map-TreeMaps: A New Approach for Hierarchical and Topological Clustering.
Proceedings of the Ninth International Conference on Machine Learning and Applications, 2010

Sous-échantillonnage topographique par apprentissage semi-supervisé.
Proceedings of the Extraction et gestion des connaissances (EGC'2010), 2010

Auto-organisation topologique et hiérarchique des données.
Proceedings of the Extraction et gestion des connaissances (EGC'2010), 2010

2009
From variable weighting to cluster characterization in topographic unsupervised learning.
Proceedings of the International Joint Conference on Neural Networks, 2009

Caractérisation automatique des classes découvertes en classification non supervisée.
Proceedings of the Extraction et gestion des connaissances (EGC'2009), 2009

Cluster-Dependent Feature Selection through a Weighted Learning Paradigm.
Proceedings of the Advances in Knowledge Discovery and Management [Best of EGC 2009, 2009

A New Approach for Auto-organizing a Groups of Artificial Ants.
Proceedings of the Advances in Artificial Life. Darwin Meets von Neumann, 2009

2008
A Probabilistic Self-Organizing Map for Binary Data Topographic Clustering.
Int. J. Comput. Intell. Appl., 2008

Probabilistic Mixed Topological Map for Categorical and Continuous Data.
Proceedings of the Seventh International Conference on Machine Learning and Applications, 2008

Relational Analysis for Consensus Clustering from Multiple Partitions.
Proceedings of the Seventh International Conference on Machine Learning and Applications, 2008

Segmentation hiérarchique des cartes topologiques.
Proceedings of the Extraction et gestion des connaissances (EGC'2008), 2008

Pondération locale des variables en apprentissage numérique non-supervisé.
Proceedings of the Extraction et gestion des connaissances (EGC'2008), 2008

Clustering of Self-Organizing Map.
Proceedings of the 16th European Symposium on Artificial Neural Networks, 2008

2007
BeSOM : Bernoulli on Self-Organizing Map.
Proceedings of the International Joint Conference on Neural Networks, 2007

Combinaison des cartes topologiques mixtes et des machines à vecteurs de support : une application pour la prédiction de perte de poids chez les obèses.
Proceedings of the Extraction et gestion des connaissances (EGC'2007), 2007

Approche connexionniste pour l'extraction de profils cas-témoins du cancer du Nasopharynx à partir des données issues d'une étude épidémiologique.
Proceedings of the Extraction et gestion des connaissances (EGC'2007), 2007

2006
Partitionnement des données pour les problèmes de classement difficiles: Combinaison des cartes topologiques mixtes et SVM.
Proceedings of the Apprentissage Artificiel et Fouille de Données, 2006

2005
Mixed Topological Map.
Proceedings of the 13th European Symposium on Artificial Neural Networks, 2005

2004
Visualization and classification with categorical topological map.
Proceedings of the 12th European Symposium on Artificial Neural Networks, 2004

2003
Carte topologique pour données qualitatives: application à la reconnaissance automatique de la densité du trafic routier.
PhD thesis, 2003

2002
Categorical Topological Map.
Proceedings of the Artificial Neural Networks, 2002

2000
Topological map for binary data.
Proceedings of the 8th European Symposium on Artificial Neural Networks, 2000


  Loading...