Mondher Maddouri

According to our database1, Mondher Maddouri authored at least 48 papers between 1996 and 2022.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2022
A distributed and incremental algorithm for large-scale graph clustering.
Future Gener. Comput. Syst., 2022

2021
DFC: A Performant Dagging Approach of Classification Based on Formal Concept.
Int. J. Artif. Intell. Mach. Learn., 2021

2020
Multiple instance learning for sequence data with across bag dependencies.
Int. J. Mach. Learn. Cybern., 2020

Efficient Closure Operators for FCA-Based Classification.
Int. J. Artif. Intell. Mach. Learn., 2020

Survey on Formal Concept Analysis Based Supervised Classification Techniques.
Proceedings of the Machine Learning and Artificial Intelligence, 2020

Catégorisation des méthodes de classification fondées sur l'Analyse de Concepts Formels.
Proceedings of the IC 2020 : 31es Journées francophones d'Ingénierie des Connaissances (Proceedings of the 31st French Knowledge Engineering Conference), Angers, France, June 29, 2020

Un algorithme distribué pour le clustering de grands graphes.
Proceedings of the Extraction et Gestion des Connaissances, 2020

2019
Efficiently Mining Recurrent Substructures from Protein Three-Dimensional Structure Graphs.
J. Comput. Biol., 2019

A Structure Based Multiple Instance Learning Approach for Bacterial Ionizing Radiation Resistance Prediction.
Proceedings of the Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES-2019, 2019

Cloud Implementation of Classier Nominal Concepts using DistributedWekaSpark.
Proceedings of the Supplementary Proceedings of ICFCA 2019 Conference and Workshops, 2019

2018
An experimental survey on big data frameworks.
Future Gener. Comput. Syst., 2018

A Comparative Study on Streaming Frameworks for Big Data.
Proceedings of the Latin America Data Science Workshop co-located with 44th International Conference on Very Large Data Bases (VLDB 2018), 2018

ABClass : Une approche d'apprentissage multi-instances pour les séquences(ABClass: A multiple instance learning approach for sequence data).
Proceedings of the Actes de la Conférence Nationale d'Intelligence Artificielle et Rencontres des Jeunes Chercheurs en Intelligence Artificielle (CNIA+RJCIA 2018), 2018

2017
A New Feature Selection Method for Nominal Classifier based on Formal Concept Analysis.
Proceedings of the Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 21st International Conference KES-2017, 2017

2016
Prediction of Ionizing Radiation Resistance in Bacteria Using a Multiple Instance Learning Model.
J. Comput. Biol., 2016

A multiple instance learning approach for sequence data with across bag dependencies.
CoRR, 2016

New Taxonomy of Classification Methods Based on Formal Concepts Analysis.
Proceedings of the 5th International Workshop "What can FCA do for Artificial Intelligence"? co-located with the European Conference on Artificial Intelligence, 2016

2015
Density-based data partitioning strategy to approximate large-scale subgraph mining.
Inf. Syst., 2015

Cost Models for Distributed Pattern Mining in the Cloud.
Proceedings of the 2015 IEEE TrustCom/BigDataSE/ISPA, 2015

2014
Un partitionnement basé sur la densité de graphe pour approcher la fouille distribuée de sous-graphes fréquents.
Tech. Sci. Informatiques, 2014

Parallel Learning and Classification for Rules based on Formal Concepts.
Proceedings of the 18th International Conference in Knowledge Based and Intelligent Information and Engineering Systems, 2014

2013
Computational phenotype prediction of ionizing-radiation-resistant bacteria with a multiple-instance learning model.
Proceedings of the 12th International Workshop on Data Mining in Bioinformatics, 2013

2012
Diversity Analysis on Boosting Nominal Concepts.
Proceedings of the Advances in Knowledge Discovery and Data Mining, 2012

Feature extraction in protein sequences classification: a new stability measure.
Proceedings of the ACM International Conference on Bioinformatics, 2012

2011
Vers un critère d'arrêt de Boosting basé sur la diversité des classifieurs.
Proceedings of the Actes du XXIXème Congrès INFORSID, Lille, France, 24-25 mai 2011, 2011

2010
Protein sequences classification by means of feature extraction with substitution matrices.
BMC Bioinform., 2010

Adaptive Learning of Nominal Concepts for Supervised Classification.
Proceedings of the Knowledge-Based and Intelligent Information and Engineering Systems, 2010

Etude de stabilité de méthodes d'extraction de motifs à partir des séquences protéiques.
Proceedings of the Extraction et gestion des connaissances (EGC'2010), 2010

Apprentissage supervisé adaptatif de Concepts Formels à partir des données nominales.
Proceedings of the Extraction et gestion des connaissances (EGC'2010), 2010

Développement de méthodes de classification basées sur l'analyse de concepts formels sous la plateforme WEKA.
Proceedings of the Extraction et gestion des connaissances (EGC'2010), 2010

2009
A Hybrid Approach of Boosting Against Noisy Data.
Proceedings of the Mining Complex Data, 2009

Comparing graph-based representations of protein for mining purposes.
Proceedings of the ACM SIGKDD Workshop on Statistical and Relational Learning in Bioinformatics, 2009

Boosting Formal Concepts to Discover Classification Rules.
Proceedings of the Next-Generation Applied Intelligence, 2009

Générer des règles de classification par dopage de concepts formels.
Proceedings of the Extraction et gestion des connaissances (EGC'2009), 2009

2008
Une nouvelle approche du Boosting face aux données réelles.
Proceedings of the Extraction et gestion des connaissances (EGC'2008), 2008

2007
On Semantic Properties of Interestingness Measures for Extracting Rules from Data.
Proceedings of the Adaptive and Natural Computing Algorithms, 8th International Conference, 2007

Classification supervisée de séquences biologiques basée sur les motifs et les matrices de substitution.
Proceedings of the Extraction et gestion des connaissances (EGC'2007), 2007

Improving Boosting by Exploiting Former Assumptions.
Proceedings of the Mining Complex Data, ECML/PKDD 2007 Third International Workshop, 2007

Biological Sequences Encoding for Supervised Classification.
Proceedings of the Bioinformatics Research and Development, First International Conference, 2007

2006
On Statistical Measures for Selecting Pertinent Formal Concepts to Discover Production Rules from Data.
Proceedings of the Workshops Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), 2006

Construction d'attributs pour l'extraction de connaissances à partir de séquences biologiques.
Proceedings of the Apprentissage Artificiel et Fouille de Données, 2006

2005
New voting strategies designed for the classification of nucleic sequences.
Knowl. Inf. Syst., 2005

A Formal Concept Analysis Approach to Discover Association Rules from Data.
Proceedings of the CLA 2005 International Workshop on Concept Lattices and their Applications Olomouc, 2005

2004
Encoding of Primary Structures of Biological Macromolecules Within a Data Mining Perspective.
J. Comput. Sci. Technol., 2004

Towards a machine learning approach based on incremental concept formation.
Intell. Data Anal., 2004

2002
A data mining approach based on machine learning techniques to classify biological sequences.
Knowl. Based Syst., 2002

1998
An Incrementa Learning System for Imprecise and Uncertain Knowledge Discovery.
Inf. Sci., 1998

1996
Incremental Rule Production: Towards a Uniform Approach for Knowledge Organization.
Proceedings of the Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, 1996


  Loading...