Moawwad E. A. El-Mikkawy
Affiliations:- Mansoura University, Egypt
According to our database1,
Moawwad E. A. El-Mikkawy
authored at least 38 papers
between 1991 and 2023.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2023
A Fast Novel Recursive Algorithm for Computing the Inverse of a Generalized Vandermonde Matrix.
Axioms, January, 2023
2022
CoRR, 2022
CoRR, 2022
2015
Appl. Math. Lett., 2015
2014
Appl. Math. Lett., 2014
2013
Comput. Math. Appl., 2013
Derivation of identities involving some special polynomials and numbers via generating functions with applications.
Appl. Math. Comput., 2013
2011
2010
Symbolic algorithm for inverting cyclic pentadiagonal matrices recursively - Derivation and implementation.
Comput. Math. Appl., 2010
Appl. Math. Comput., 2010
2009
A new recursive algorithm for inverting general periodic pentadiagonal and anti-pentadiagonal matrices.
Appl. Math. Comput., 2009
2008
Appl. Math. Comput., 2008
A new recursive algorithm for inverting general tridiagonal and anti-tridiagonal matrices.
Appl. Math. Comput., 2008
Appl. Math. Comput., 2008
2006
2005
Combinatorial and hypergeometric identities via the Legendre polynomials--A computational approach.
Appl. Math. Comput., 2005
Appl. Math. Comput., 2005
2004
Appl. Math. Comput., 2004
2003
Appl. Math. Lett., 2003
A new optimized non-FSAL embedded Runge-Kutta-Nystrom algorithm of orders 6 and 4 in six stages.
Appl. Math. Comput., 2003
On a connection between symmetric polynomials, generalized Stirling numbers and the Newton general divided difference interpolation polynomial.
Appl. Math. Comput., 2003
A general four-parameter non-FSAL embedded Runge-Kutta algorithm of orders 6 and 4 in seven stages.
Appl. Math. Comput., 2003
Appl. Math. Comput., 2003
Appl. Math. Comput., 2003
Appl. Math. Comput., 2003
Appl. Math. Comput., 2003
2002
Int. J. Comput. Math., 2002
1991
A better approach for the derivation of the embedded runge-kutta-nystrom pair of orders 6 and 4.
Int. J. Comput. Math., 1991