Mikhail E. Muzychuk

Orcid: 0000-0002-6346-8976

According to our database1, Mikhail E. Muzychuk authored at least 35 papers between 1992 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of two.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Constructing linked systems of relative difference sets via Schur rings.
Des. Codes Cryptogr., September, 2024

On balanced automorphisms of abelian groups.
Eur. J. Comb., March, 2024

2023
CI-property of Cp2×Cn and Cp2×Cq2 for digraphs.
J. Comb. Theory A, May, 2023

2022
Generalized dihedral CI-groups.
Ars Math. Contemp., 2022

2021
A classification of one-dimensional affine rank three graphs.
Discret. Math., 2021

2020
Testing isomorphism of circulant objects in polynomial time.
J. Comb. Theory A, 2020

2019
Cyclic groups are CI-groups for balanced configurations.
Des. Codes Cryptogr., 2019

2018
The Cayley Isomorphism Property for Cayley Maps.
Electron. J. Comb., 2018

2014
Tensor Rank: Matching Polynomials and Schur Rings.
Found. Comput. Math., 2014

2013
Uniformity in association schemes and coherent configurations: Cometric Q-antipodal schemes and linked systems.
J. Comb. Theory A, 2013

2012
On pseudocyclic association schemes.
Ars Math. Contemp., 2012

2010
Some implications on amorphic association schemes.
J. Comb. Theory A, 2010

2009
Schur rings.
Eur. J. Comb., 2009

A wedge product of association schemes.
Eur. J. Comb., 2009

2008
On balanced Cayley maps over abelian groups.
Electron. Notes Discret. Math., 2008

On association schemes all elements of which have valency 1 or 2.
Discret. Math., 2008

2007
Association schemes on 28 points as mergings of a half-homogeneous coherent configuration.
Eur. J. Comb., 2007

2005
Strongly regular Cayley graphs over the group <i>Z<sub>p<sup>n</sup></sub> sumset Z<sub>p<sup>n</sup></sub></i>.
Discret. Math., 2005

A Solution of a Problem of A. E. Brouwer.
Des. Codes Cryptogr., 2005

2003
An Elementary Abelian Group of Large rank is not a CI-group.
Discret. Math., 2003

2002
On Quasi-thin Association Schemes.
J. Comb. Theory A, 2002

Association schemes generated by a non-symmetric relation of valency 2.
Discret. Math., 2002

Small vertex-transitive directed strongly regular graphs.
Discret. Math., 2002

2001
An Elementary Abelian Group of Rank 4 Is a CI-Group.
J. Comb. Theory A, 2001

Recognizing Circulant Graphs in Polynomial Time: An Application of Association Schemes.
Electron. J. Comb., 2001

On normal quotients of transitive graphs.
Ars Comb., 2001

1999
On the isomorphism problem for cyclic combinatorial objects.
Discret. Math., 1999

The isomorphism problem for circulant graphs via Schur ring theory.
Proceedings of the Codes and Association Schemes, 1999

1998
On graphs with three eigenvalues.
Discret. Math., 1998

Recognizing Circulant Graphs of Prime Order in Polynomial Time.
Electron. J. Comb., 1998

1997
On Ádám's conjecture for circulant graphs.
Discret. Math., 1997

1996
on the Mathematical Model of Triangulanes.
Discret. Appl. Math., 1996

1995
Ádám's Conjecture is True in the Square-Free Case.
J. Comb. Theory A, 1995

1993
The Structure of Rational Schur Rings over Cyclic Groups.
Eur. J. Comb., 1993

1992
Subschemes of the Johnson scheme.
Eur. J. Comb., 1992


  Loading...