Michael Vynnycky
Orcid: 0000-0002-8318-1251
According to our database1,
Michael Vynnycky
authored at least 31 papers
between 2003 and 2023.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
On csauthors.net:
Bibliography
2023
On boundary immobilization for one-dimensional Stefan-type problems with a moving boundary having initially parabolic-logarithmic behaviour.
Appl. Math. Comput., May, 2023
SIAM J. Appl. Math., April, 2023
J. Comput. Appl. Math., 2023
Corrigendum to 'An accuracy-preserving numerical scheme for parabolic partial differential equations subject to discontinuities in boundary conditions' [Applied Mathematics and Computation 400 (2021) 125979].
Appl. Math. Comput., 2023
2022
On A Transient Nonlinear One-Dimensional Reaction-Diffusion Equation with A Point-Source Initial Condition.
SIAM J. Appl. Math., 2022
Fast computation of the Lorentz force induced by longitudinal electromagnetic stirring.
J. Comput. Appl. Math., 2022
Inverse two-phase nonlinear Stefan and Cauchy-Stefan problems: A phase-wise approach.
Comput. Math. Appl., 2022
2021
SIAM J. Appl. Math., 2021
An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem.
Comput. Appl. Math., 2021
Efficient numerical solution of boundary identification problems: MFS with adaptive stochastic optimization.
Appl. Math. Comput., 2021
An accuracy-preserving numerical scheme for parabolic partial differential equations subject to discontinuities in boundary conditions.
Appl. Math. Comput., 2021
2020
Algorithms, 2020
2019
SIAM J. Appl. Math., 2019
An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem.
J. Comput. Appl. Math., 2019
An elementary diffusion problem, Laplace transforms and novel mathematical identities.
J. Comput. Appl. Math., 2019
2016
A finite difference technique for solving a time strain separable K-BKZ constitutive equation for two-dimensional moving free surface flows.
J. Comput. Phys., 2016
On the accurate numerical solution of a two-phase Stefan problem with phase formation and depletion.
J. Comput. Appl. Math., 2016
2015
SIAM J. Appl. Math., 2015
J. Math. Imaging Vis., 2015
J. Comput. Appl. Math., 2015
Towards computationally-efficient modeling of transport phenomena in three-dimensional monolithic channels.
Appl. Math. Comput., 2015
Appl. Math. Comput., 2015
2014
On the numerical solution of two-phase Stefan problems with heat-flux boundary conditions.
J. Comput. Appl. Math., 2014
The slow, steady ascent of a hot solid sphere in a Newtonian fluid with strongly temperature-dependent viscosity.
Appl. Math. Comput., 2014
2012
J. Comput. Appl. Math., 2012
An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity.
Appl. Math. Comput., 2012
2011
An accurate numerical solution for the transient heating of an evaporating spherical droplet.
Appl. Math. Comput., 2011
2009
SIAM J. Appl. Math., 2009
Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems.
Appl. Math. Comput., 2009
2007
On the modelling of two-phase flow in the cathode gas diffusion layer of a polymer electrolyte fuel cell.
Appl. Math. Comput., 2007
2003
Analysis of a Model for Multicomponent Mass Transfer in the Cathode of a Polymer Electrolyte Fuel Cell.
SIAM J. Appl. Math., 2003