María J. Ibáñez
Orcid: 0000-0003-1239-680XAffiliations:
- University of Granada, Department of Applied Mathematics, Spain
According to our database1,
María J. Ibáñez
authored at least 37 papers
between 1996 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on scopus.com
-
on orcid.org
On csauthors.net:
Bibliography
2025
2024
Normalized B-spline-like representation for low-degree Hermite osculatory interpolation problems.
Math. Comput. Simul., 2024
Non-uniform WENO-based quasi-interpolating splines from the Bernstein-Bézier representation and applications.
Math. Comput. Simul., 2024
Construction of 2D explicit cubic quasi-interpolating splines in Bernstein-Bézier form.
CoRR, 2024
2023
Appl. Math. Comput., November, 2023
Spline quasi-interpolation in the Bernstein basis on the Powell-Sabin 6-split of a type-1 triangulation.
J. Comput. Appl. Math., May, 2023
2022
A new approach to deal with C2 cubic splines and its application to super-convergent quasi-interpolation.
Math. Comput. Simul., 2022
2021
A geometric characterization of Powell-Sabin triangulations allowing the construction of <i>C</i><sup>2</sup> quartic splines.
Comput. Math. Appl., 2021
2020
A quasi-interpolation product integration based method for solving Love's integral equation with a very small parameter.
Math. Comput. Simul., 2020
Math. Comput. Simul., 2020
Int. J. Comput. Math., 2020
2019
Estimation of the reset voltage in resistive RAMs using the charge-flux domain and a numerical method based on quasi-interpolation and discrete orthogonal polynomials.
Math. Comput. Simul., 2019
A spline quasi-interpolation based method to obtain the reset voltage in Resistive RAMs in the charge-flux domain.
J. Comput. Appl. Math., 2019
J. Comput. Appl. Math., 2019
J. Comput. Appl. Math., 2019
2018
Numer. Algorithms, 2018
2017
Math. Comput. Simul., 2017
On the construction of trivariate near-best quasi-interpolants based on C<sup>2</sup> quartic splines on type-6 tetrahedral partitions.
J. Comput. Appl. Math., 2017
Hermite spline interpolation on a three direction mesh from Powell-Sabin and Hsieh-Clough-Tocher finite elements.
J. Comput. Appl. Math., 2017
2015
An in-depth study on WENO-based techniques to improve parameter extraction procedures in MOSFET transistors.
Math. Comput. Simul., 2015
J. Comput. Appl. Math., 2015
2014
A comprehensive characterization of the threshold voltage extraction in MOSFETs transistors based on smoothing splines.
Math. Comput. Simul., 2014
2013
J. Comput. Appl. Math., 2013
Construction techniques for multivariate modified quasi-interpolants with high approximation order.
Comput. Math. Appl., 2013
2011
Math. Comput. Simul., 2011
Math. Comput. Simul., 2011
2010
J. Comput. Appl. Math., 2010
J. Comput. Appl. Math., 2010
J. Comput. Appl. Math., 2010
J. Comput. Appl. Math., 2010
2009
2008
Near-best operators based on a <i>I</i> quartic spline on the uniform four-directional mesh.
Math. Comput. Simul., 2008
1996
Compactly Supported Fundamental Functions for Bivariate Hermite Spline Interpolation and Triangular Finite Elements of HCT Type.
Proceedings of the Numerical Analysis and Its Applications, First International Workshop, 1996