Marek W. Zawadowski

Orcid: 0000-0002-2031-4803

According to our database1, Marek W. Zawadowski authored at least 21 papers between 1985 and 2024.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Polyadic Quantifiers on Dependent Types.
Proceedings of the Logic, Language, Information, and Computation, 2024

2019
Inverse Linking, Possessive Weak Definites and Haddock Descriptions: A Unified Dependent Type Account.
J. Log. Lang. Inf., 2019

co-Semi-analytic Functors.
Fundam. Informaticae, 2019

Continuation Semantics for Multi-Quantifier Sentences: Operation-Based Approaches.
Fundam. Informaticae, 2019

2017
Scope ambiguities, monads and strengths.
J. Lang. Model., 2017

2015
Generalized Płonka Sums and Products.
Appl. Categorical Struct., 2015

Monads of Regular Theories.
Appl. Categorical Struct., 2015

Whence Long-Distance Indefinite Readings? Solving Chierchia's Puzzle with Dependent Types.
Proceedings of the Logic, Language, and Computation, 2015

2014
Theories of analytic monads.
Math. Struct. Comput. Sci., 2014

Rigidity is undecidable.
Math. Struct. Comput. Sci., 2014

Generalized Quantifiers on Dependent Types: A System for Anaphora.
CoRR, 2014

2002
Sheaves, games, and model completions - a categorical approach to nonclassical propositional logics.
Trends in logic 14, Springer, ISBN: 978-1-4020-0660-9, 2002

2000
From Bisimulation Quantifiers to Classifying Toposes.
Proceedings of the Advances in Modal Logic 3, 2000

1997
Model Completions, r-Heyting Categories.
Ann. Pure Appl. Log., 1997

1995
Undefinability of propositional quantifiers in the modal system S4.
Stud Logica, 1995

A Sheaf Representation and Duality for Finitely Presenting Heyting Algebras.
J. Symb. Log., 1995

Descent and Duality.
Ann. Pure Appl. Log., 1995

1993
Formal systems for modal operators on locales.
Stud Logica, 1993

1992
A representation of partial Boolean algebras.
Fundam. Informaticae, 1992

1985
The Skolem-Löwenheim theorem in toposes. II.
Stud Logica, 1985

Sheaves over Heyting lattices.
Stud Logica, 1985


  Loading...