Marcel G. Clerc

Orcid: 0000-0002-8006-0729

According to our database1, Marcel G. Clerc authored at least 15 papers between 2001 and 2024.

Collaborative distances:
  • Dijkstra number2 of six.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Faraday kinks connecting parametric waves in magnetic wires.
Commun. Nonlinear Sci. Numer. Simul., April, 2024

2023
Giant boundary layer induced by nonreciprocal coupling in discrete systems.
Commun. Nonlinear Sci. Numer. Simul., October, 2023

2021
Particle-based numerical modeling of a thin granular layer subjected to oscillating flow.
Commun. Nonlinear Sci. Numer. Simul., 2021

Traveling chimera states in continuous media.
Commun. Nonlinear Sci. Numer. Simul., 2021

2020
Freak chimera states in a locally coupled Duffing oscillators chain.
Commun. Nonlinear Sci. Numer. Simul., 2020

2018
Symmetry Breaking and Restoration in the Ginzburg-Landau Model of Nematic Liquid Crystals.
J. Nonlinear Sci., 2018

Alternation of Defects and Phase Turbulence Induces Extreme Events in an Extended Microcavity Laser.
Entropy, 2018

2017
Alternating superlattice textures in driven nanomagnets.
Commun. Nonlinear Sci. Numer. Simul., 2017

2016
Asymmetric counter propagation of domain walls.
Commun. Nonlinear Sci. Numer. Simul., 2016

2015
From localized spots to the formation of invaginated labyrinthine structures in a Swift-Hohenberg model.
Commun. Nonlinear Sci. Numer. Simul., 2015

2009
Dynamics of an Interface Connecting a Stripe Pattern and a Uniform State: amended Newell-Whitehead-Segel equation.
Int. J. Bifurc. Chaos, 2009

Parametrically Driven Instability in Quasi-Reversal Systems.
Int. J. Bifurc. Chaos, 2009

Nonvariational Ising-Bloch Transition in Parametrically Driven Systems.
Int. J. Bifurc. Chaos, 2009

2008
Shilnikov bifurcation: Stationary Quasi-Reversal bifurcation.
Int. J. Bifurc. Chaos, 2008

2001
The stationary Instability in quasi-Reversible Systems and the Lorenz Pendulum.
Int. J. Bifurc. Chaos, 2001


  Loading...