Marc Modat

Orcid: 0000-0002-5277-8530

According to our database1, Marc Modat authored at least 185 papers between 2008 and 2024.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
R-Trans - A Recurrent Transformer Model for Clinical Feedback in Surgical Skill Assessment.
CoRR, 2024

Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis.
CoRR, 2024

Letter to the Editor: What are the legal and ethical considerations of submitting radiology reports to ChatGPT?
CoRR, 2024

Lazy Resampling: Fast and information preserving preprocessing for deep learning.
Comput. Methods Programs Biomed., 2024

Deep Learning Multi-channel Structural and Diffusion Tensor Neonatal Image Registration.
Proceedings of the Biomedical Image Registration - 11th International Workshop, 2024

2023
Learn2Reg: Comprehensive Multi-Task Medical Image Registration Challenge, Dataset and Evaluation in the Era of Deep Learning.
IEEE Trans. Medical Imaging, March, 2023

CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation.
Medical Image Anal., 2023

Generative AI for Medical Imaging: extending the MONAI Framework.
CoRR, 2023

2022
nipy/nipype: 1.8.3.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, July, 2022

nipy/nipype: 1.8.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, May, 2022

nipy/nipype: 1.8.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, May, 2022

nipy/nipype: 1.7.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, April, 2022

Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas.
Medical Image Anal., 2022

MONAI: An open-source framework for deep learning in healthcare.
CoRR, 2022

Augmentation based unsupervised domain adaptation.
CoRR, 2022

CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwnannoma and Cochlea Segmentation.
CoRR, 2022

A Multi-organ Point Cloud Registration Algorithm for Abdominal CT Registration.
Proceedings of the Biomedical Image Registration - 10th International Workshop, 2022

A Pareto front based methodology to better assess medical image registration algorithms.
Proceedings of the Medical Imaging 2022: Image Processing, 2022

Driving Points Prediction for Abdominal Probabilistic Registration.
Proceedings of the Machine Learning in Medical Imaging - 13th International Workshop, 2022

Attention-Driven Multi-channel Deformable Registration of Structural and Microstructural Neonatal Data.
Proceedings of the Perinatal, Preterm and Paediatric Image Analysis, 2022

2021
nipy/nipype: 1.7.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, October, 2021

Robust parametric modeling of Alzheimer's disease progression.
NeuroImage, 2021

Uncertainty analysis of MR-PET image registration for precision neuro-PET imaging.
NeuroImage, 2021

Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning.
CoRR, 2021

Inter Extreme Points Geodesics for Weakly Supervised Segmentation.
CoRR, 2021

MONAIfbs: MONAI-based fetal brain MRI deep learning segmentation.
CoRR, 2021

Lesion-wise evaluation for effective performance monitoring of small object segmentation.
Proceedings of the Medical Imaging 2021: Image Processing, Online, February 15-19, 2021, 2021

Uncertainty-Aware Deep Learning Based Deformable Registration.
Proceedings of the Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis, 2021

Inter Extreme Points Geodesics for End-to-End Weakly Supervised Image Segmentation.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 - 24th International Conference, Strasbourg, France, September 27, 2021

2020
nipy/nipype: 1.5.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, September, 2020

nipy/nipype: 1.5.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, June, 2020

nipy/nipype: 1.4.2.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, February, 2020

nipy/nipype: 1.4.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, January, 2020

Evaluation of MRI to Ultrasound Registration Methods for Brain Shift Correction: The CuRIOUS2018 Challenge.
IEEE Trans. Medical Imaging, 2020

Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellar cortex of the Tc1 mouse model of down syndrome - a comprehensive morphometric analysis with active staining contrast-enhanced MRI.
NeuroImage, 2020

Accessible Data Curation and Analytics for International-Scale Citizen Science Datasets.
CoRR, 2020

Automated postoperative muscle assessment of hip arthroplasty patients using multimodal imaging joint segmentation.
Comput. Methods Programs Biomed., 2020

Diffusion Tensor Driven Image Registration: A Deep Learning Approach.
Proceedings of the Biomedical Image Registration - 9th International Workshop, 2020

Towards Automated Spine Mobility Quantification: A Locally Rigid CT to X-ray Registration Framework.
Proceedings of the Biomedical Image Registration - 9th International Workshop, 2020

Uncertainty-Aware Multi-resolution Whole-Body MR to CT Synthesis.
Proceedings of the Simulation and Synthesis in Medical Imaging, 2020

Harmonised Segmentation of Neonatal Brain MRI: A Domain Adaptation Approach.
Proceedings of the Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis, 2020

Scribble-Based Domain Adaptation via Co-segmentation.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2020, 2020

Machine Learning and Glioblastoma: Treatment Response Monitoring Biomarkers in 2021.
Proceedings of the Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology, 2020

Combining Multimodal Information for Metal Artefact Reduction: An Unsupervised Deep Learning Framework.
Proceedings of the 17th IEEE International Symposium on Biomedical Imaging, 2020

2019
nipy/nipype: 1.4.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, December, 2019

nipy/nipype: 1.3.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, November, 2019

nipy/nipype: 1.3.0-rc1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, October, 2019

nipy/nipype: 1.2.2.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, September, 2019

nipy/nipype: 1.2.2.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, September, 2019

nipy/nipype: 1.2.3.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, September, 2019

nipy/nipype: 1.2.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, August, 2019

nipy/nipype: 1.2.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, May, 2019

nipy/nipype: 1.1.9.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, February, 2019

nipy/nipype: 1.1.8.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, January, 2019

Training recurrent neural networks robust to incomplete data: Application to Alzheimer's disease progression modeling.
Medical Image Anal., 2019

GAS: A genetic atlas selection strategy in multi-atlas segmentation framework.
Medical Image Anal., 2019

Grey matter sublayer thickness estimation in themouse cerebellum.
CoRR, 2019

PADDIT: Probabilistic Augmentation of Data using Diffeomorphic Image Transformation.
Proceedings of the Medical Imaging 2019: Image Processing, 2019

Knowledge Distillation for Semi-supervised Domain Adaptation.
Proceedings of the OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging, 2019

Multi-domain Adaptation in Brain MRI Through Paired Consistency and Adversarial Learning.
Proceedings of the Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data, 2019

Permutohedral Attention Module for Efficient Non-local Neural Networks.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, 2019

Investigating Image Registration Impact on Preterm Birth Classification: An Interpretable Deep Learning Approach.
Proceedings of the Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis, 2019

Incompressible Image Registration Using Divergence-Conforming B-Splines.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, 2019

Landmark-Based Evaluation of a Block-Matching Registration Framework on the RESECT Pre- and Intra-operative Brain Image Data Set.
Proceedings of the Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention, 2019

Hetero-Modal Variational Encoder-Decoder for Joint Modality Completion and Segmentation.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, 2019

On the Initialization of Long Short-Term Memory Networks.
Proceedings of the Neural Information Processing - 26th International Conference, 2019

Comparison of Multi-class Machine Learning Methods for the Identification of Factors Most Predictive of Prognosis in Neurobehavioral assessment of Pediatric Severe Disorder of Consciousness through LOCFAS scale.
Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2019

2018
nipy/nipype: 1.1.7.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, December, 2018

nipy/nipype: 1.1.6.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, November, 2018

nipy/nipype: 1.1.5.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, November, 2018

nipy/nipype: 1.1.4.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, October, 2018

nipy/nipype: 1.1.3.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, September, 2018

nipy/nipype: 1.1.2.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, August, 2018

nipy/nipype: 1.1.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, July, 2018

nipy/nipype: Nipype 1.1.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, July, 2018

nipy/nipype: 1.0.4.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, May, 2018

nipy/nipype: 1.0.4.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, May, 2018

nipy/nipype: Nipype 1.0.3.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, April, 2018

nipy/nipype: 1.0.2.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, March, 2018

nipy/nipype: 1.0.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, February, 2018

nipy/nipype: Nipype - v1.0.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, January, 2018

A magnetic resonance multi-atlas for the neonatal rabbit brain.
NeuroImage, 2018

A Survey of Methods for 3D Histology Reconstruction.
Medical Image Anal., 2018

Joint registration and synthesis using a probabilistic model for alignment of MRI and histological sections.
Medical Image Anal., 2018

Weakly-supervised convolutional neural networks for multimodal image registration.
Medical Image Anal., 2018

Simultaneous synthesis of FLAIR and segmentation of white matter hypointensities from T1 MRIs.
CoRR, 2018

Robust training of recurrent neural networks to handle missing data for disease progression modeling.
CoRR, 2018

NiftyNet: a deep-learning platform for medical imaging.
Comput. Methods Programs Biomed., 2018

Imaging biomarkers for the diagnosis of Prion disease.
Proceedings of the Medical Imaging 2018: Image Processing, 2018

Deep Boosted Regression for MR to CT Synthesis.
Proceedings of the Simulation and Synthesis in Medical Imaging, 2018

Model-Based Refinement of Nonlinear Registrations in 3D Histology Reconstruction.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2018, 2018

Computational Modelling of Pathogenic Protein Behaviour-Governing Mechanisms in the Brain.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2018, 2018

Registration of MRI and iUS Data to Compensate Brain Shift Using a Symmetric Block-Matching Based Approach.
Proceedings of the Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation, 2018

Gaussian Processes with optimal kernel construction for neuro-degenerative clinical onset prediction.
Proceedings of the Medical Imaging 2018: Computer-Aided Diagnosis, 2018

Label-driven weakly-supervised learning for multimodal deformarle image registration.
Proceedings of the 15th IEEE International Symposium on Biomedical Imaging, 2018

Forward-backward splitting in deformable image registration: A demons approach.
Proceedings of the 15th IEEE International Symposium on Biomedical Imaging, 2018

2017
nipy/nipype: 0.14.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, November, 2017

nipy/nipype: 0.14.0-rc1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, November, 2017

nipy/nipype: 0.14.0-rc1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, November, 2017

Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. 0.13.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, May, 2017

Genetic improvement of GPU software.
Genet. Program. Evolvable Mach., 2017

Comparison of In Vivo and Ex Vivo MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy.
Frontiers Neuroinformatics, 2017

Label-driven weakly-supervised learning for multimodal deformable image registration.
CoRR, 2017

Part-to-whole Registration of Histology and MRI using Shape Elements.
CoRR, 2017

Joint Multimodal Segmentation of Clinical CT and MR from Hip Arthroplasty Patients.
Proceedings of the Computational Methods and Clinical Applications in Musculoskeletal Imaging, 2017

Template-Free Estimation of Intracranial Volume: A Preterm Birth Animal Model Study.
Proceedings of the Fetal, Infant and Ophthalmic Medical Image Analysis, 2017

2016
Evaluation of Six Registration Methods for the Human Abdomen on Clinically Acquired CT.
IEEE Trans. Biomed. Eng., 2016

Bilateral Weighted Adaptive Local Similarity Measure for Registration in Neurosurgery.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016, 2016

Spatio-Temporal Shape Analysis of Cross-Sectional Data for Detection of Early Changes in Neurodegenerative Disease.
Proceedings of the Spectral and Shape Analysis in Medical Imaging, 2016

Accurate Small Deformation Exponential Approximant to Integrate Large Velocity Fields: Application to Image Registration.
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016

2015
Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion.
IEEE Trans. Medical Imaging, 2015

In vivo imaging of tau pathology using multi-parametric quantitative MRI.
NeuroImage, 2015

Longitudinal measurement of the developing grey matter in preterm subjects using multi-modal MRI.
NeuroImage, 2015

Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge.
NeuroImage, 2015

Probabilistic non-linear registration with spatially adaptive regularisation.
Medical Image Anal., 2015

NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.
Int. J. Comput. Assist. Radiol. Surg., 2015

Automatic assessment of volume asymmetries applied to hip abductor muscles in patients with hip arthroplasty.
Proceedings of the Medical Imaging 2015: Image Processing, 2015

Grey Matter Sublayer Thickness Estimation in the Mouse Cerebellum.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference Munich, Germany, October 5, 2015

Database-Based Estimation of Liver Deformation under Pneumoperitoneum for Surgical Image-Guidance and Simulation.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, 2015

Scale Factor Point Spread Function Matching: Beyond Aliasing in Image Resampling.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, 2015

Robust CT Synthesis for Radiotherapy Planning: Application to the Head and Neck Region.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, 2015

A multi-path approach to histology volume reconstruction.
Proceedings of the 12th IEEE International Symposium on Biomedical Imaging, 2015

Template-Based Multimodal Joint Generative Model of Brain Data.
Proceedings of the Information Processing in Medical Imaging, 2015

Improving MRI Brain Image Classification with Anatomical Regional Kernels.
Proceedings of the Machine Learning Meets Medical Imaging - First International Workshop, 2015

2014
A Nonlinear Biomechanical Model Based Registration Method for Aligning Prone and Supine MR Breast Images.
IEEE Trans. Medical Imaging, 2014

Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies.
IEEE Trans. Medical Imaging, 2014

Susceptibility artefact correction using dynamic graph cuts: Application to neurosurgery.
Medical Image Anal., 2014

An Oblique Approach to Prediction of Conversion to Alzheimer's Disease with Multikernel Gaussian Processes.
Proceedings of the Machine Learning and Interpretation in Neuroimaging, 2014

A symmetric block-matching framework for global registration.
Proceedings of the Medical Imaging 2014: Image Processing, 2014

Multi-modal pharmacokinetic modelling for DCE-MRI: using diffusion weighted imaging to constrain the local arterial input function.
Proceedings of the Medical Imaging 2014: Image Processing, 2014

Simulating Neurodegeneration through Longitudinal Population Analysis of Structural and Diffusion Weighted MRI Data.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014, 2014

Longitudinal Measurement of the Developing Thalamus in the Preterm Brain Using Multi-modal MRI.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014, 2014

Multi-scale Analysis of Imaging Features and Its Use in the Study of COPD Exacerbation Susceptible Phenotypes.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014, 2014

Improving 3D medical image registration CUDA software with genetic programming.
Proceedings of the Genetic and Evolutionary Computation Conference, 2014

2013
An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer's disease.
NeuroImage, 2013

AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI.
NeuroImage, 2013

STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation.
Medical Image Anal., 2013

CT colonography: inverse-consistent symmetric registration of prone and supine inner colon surfaces.
Proceedings of the Medical Imaging 2013: Image Processing, 2013

Susceptibility artefact correction by combining B0 field maps and non-rigid registration using graph cuts.
Proceedings of the Medical Imaging 2013: Image Processing, 2013

A Bayesian Approach for Spatially Adaptive Regularisation in Non-rigid Registration.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013, 2013

Registration of Prone and Supine CT Colonography Datasets with Differing Endoluminal Distension.
Proceedings of the Abdominal Imaging. Computation and Clinical Applications, 2013

Quantitative Airway Analysis in Longitudinal Studies Using Groupwise Registration and 4D Optimal Surfaces.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013, 2013

Attenuation Correction Synthesis for Hybrid PET-MR Scanners.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013, 2013

Multi-atlas Propagation Whole Heart Segmentation from MRI and CTA Using a Local Normalised Correlation Coefficient Criterion.
Proceedings of the Functional Imaging and Modeling of the Heart, 2013

2012
Accurate Localization of Optic Radiation During Neurosurgery in an Interventional MRI Suite.
IEEE Trans. Medical Imaging, 2012

An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease.
NeuroImage, 2012

Inverse-Consistent Symmetric Free Form Deformation.
Proceedings of the Biomedical Image Registration - 5th International Workshop, 2012

Parametric non-rigid registration using a stationary velocity field.
Proceedings of the 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, 2012

Multi-STEPS: Multi-label similarity and truth estimation for propagated segmentations.
Proceedings of the 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, 2012

Using fractional gradient information in non-rigid image registration: application to breast MRI.
Proceedings of the Medical Imaging 2012: Image Processing, 2012

Manifold learning for atlas selection in multi atlas-based segmentation of hippocampus.
Proceedings of the Medical Imaging 2012: Image Processing, 2012

Immediate ROI Search for 3-D Medical Images.
Proceedings of the Medical Content-Based Retrieval for Clinical Decision Support, 2012

Cortical Folding Analysis on Patients with Alzheimer's Disease and Mild Cognitive Impairment.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2012, 2012

Geodesic Shape-Based Averaging.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2012, 2012

Geodesic Information Flows.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2012, 2012

Classification of Alzheimer's disease patients and controls with Gaussian processes.
Proceedings of the 9th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2012

2011
Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge.
IEEE Trans. Medical Imaging, 2011

Brain MAPS: An automated, accurate and robust brain extraction technique using a template library.
NeuroImage, 2011

Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping.
NeuroImage, 2011

A comparison of voxel and surface based cortical thickness estimation methods.
NeuroImage, 2011

LoAd: A locally adaptive cortical segmentation algorithm.
NeuroImage, 2011

Log-Euclidean free-form deformation.
Proceedings of the Medical Imaging 2011: Image Processing, 2011

Topologically correct cortical segmentation using Khalimsky's cubic complex framework.
Proceedings of the Medical Imaging 2011: Image Processing, 2011

Adaptive Neonate Brain Segmentation.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2011, 2011

Longitudinal Cortical Thickness Estimation Using Khalimsky's Cubic Complex.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2011, 2011

Automated brain extraction using Multi-Atlas Propagation and Segmentation (MAPS).
Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011

A hybrid fem-based method for aligning prone and supine images for image guided breast surgery.
Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011

Integrating structural and diffusion MR information for optic radiation localisation in focal epilepsy patients.
Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011

Cross-sectional analysis using voxel or surface based cortical thickness methods: A comparison study.
Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011

An Event-Based Disease Progression Model and Its Application to Familial Alzheimer's Disease.
Proceedings of the Information Processing in Medical Imaging, 2011

On the Extraction of Topologically Correct Thickness Measurements Using Khalimsky's Cubic Complex.
Proceedings of the Information Processing in Medical Imaging, 2011

Improved Neuronavigation through Integration of Intraoperative Anatomical and Diffusion Images in an Interventional MRI Suite.
Proceedings of the Information Processing in Computer-Assisted Interventions, 2011

2010
Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations.
NeuroImage, 2010

Atrophy patterns in Alzheimer's disease and semantic dementia: A comparison of FreeSurfer and manual volumetric measurements.
NeuroImage, 2010

Fast free-form deformation using graphics processing units.
Comput. Methods Programs Biomed., 2010

Nonlinear Elastic Spline Registration: Evaluation with Longitudinal Huntington's Disease Data.
Proceedings of the Biomedical Image Registration, 4th International Workshop, 2010

Diffeomorphic demons using normalized mutual information, evaluation on multimodal brain MR images.
Proceedings of the Medical Imaging 2010: Image Processing, 2010

Establishing Spatial Correspondence between the Inner Colon Surfaces from Prone and Supine CT Colonography.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, 2010

A Framework for Using Diffusion Weighted Imaging to Improve Cortical Parcellation.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, 2010

Nonrigid registration with differential bias correction using normalised mutual information.
Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2010

Locally weighted Markov random fields for cortical segmentation.
Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2010

2009
A parallel-friendly normalized mutual information gradient for free-form registration.
Proceedings of the Medical Imaging 2009: Image Processing, 2009

Improved Maximum a Posteriori Cortical Segmentation by Iterative Relaxation of Priors.
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, 2009

2008
Appearance modeling of <sup>11</sup>C PiB PET images: Characterizing amyloid deposition in Alzheimer's disease, mild cognitive impairment and healthy aging.
NeuroImage, 2008

Consistency of parametric registration in serial MRI studies of brain tumor progression.
Int. J. Comput. Assist. Radiol. Surg., 2008


  Loading...