Manuel Merino
Orcid: 0000-0002-4119-680X
According to our database1,
Manuel Merino
authored at least 18 papers
between 2000 and 2022.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2022
Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system.
Commun. Nonlinear Sci. Numer. Simul., 2022
2019
Study of a simple 3D quadratic system with homoclinic flip bifurcations of inward twist case C<sub>in</sub>.
Commun. Nonlinear Sci. Numer. Simul., 2019
2016
Remote. Sens., 2016
Commun. Nonlinear Sci. Numer. Simul., 2016
Commun. Nonlinear Sci. Numer. Simul., 2016
2015
Commun. Nonlinear Sci. Numer. Simul., 2015
2014
Commun. Nonlinear Sci. Numer. Simul., 2014
Comment on "A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family", P. Yu, X.X. Liao, S.L. Xie, Y.L. Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896].
Commun. Nonlinear Sci. Numer. Simul., 2014
Comment on "Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems" [Appl. Math. Comput. 218 (2012) 11859-11870].
Appl. Math. Comput., 2014
2012
Int. J. Bifurc. Chaos, 2012
2011
Int. J. Bifurc. Chaos, 2011
2010
Analysis of the T-Point-Hopf bifurcation with Z<sub>2</sub>-Symmetry: Application to Chua's equation.
Int. J. Bifurc. Chaos, 2010
2006
Open-to-Closed Curves of saddle-Node bifurcations of Periodic orbits Near a Nontransversal T-Point in Chua's equation.
Int. J. Bifurc. Chaos, 2006
2005
Int. J. Bifurc. Chaos, 2005
2003
Closed Curves of Global bifurcations in Chua's equation: a Mechanism for their Formation.
Int. J. Bifurc. Chaos, 2003
Int. J. Bifurc. Chaos, 2003
2001
Takens-Bogdanov bifurcations of periodic orbits and Arnold's Tongues in a Three-Dimensional Electronic Model.
Int. J. Bifurc. Chaos, 2001
2000
Int. J. Bifurc. Chaos, 2000