Mahendra Khened

Orcid: 0000-0003-0841-6628

According to our database1, Mahendra Khened authored at least 12 papers between 2017 and 2023.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
The Liver Tumor Segmentation Benchmark (LiTS).
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Medical Image Anal., 2023

2021
PAIP 2019: Liver cancer segmentation challenge.
Medical Image Anal., 2021

2020
A Generalized Deep Learning Framework for Whole-Slide Image Segmentation and Analysis.
CoRR, 2020

Brain Tumor Segmentation and Survival Prediction Using Automatic Hard Mining in 3D CNN Architecture.
Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2020

2019
Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers.
Medical Image Anal., 2019


2018
Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
IEEE Trans. Medical Imaging, 2018

2D-Densely Connected Convolution Neural Networks for automatic Liver and Tumor Segmentation.
CoRR, 2018

Ensemble of Fully Convolutional Neural Network for Brain Tumor Segmentation from Magnetic Resonance Images.
Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2018

A Combined Radio-Histological Approach for Classification of Low Grade Gliomas.
Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2018

Fully Automatic Segmentation for Ischemic Stroke Using CT Perfusion Maps.
Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2018

2017
Densely Connected Fully Convolutional Network for Short-Axis Cardiac Cine MR Image Segmentation and Heart Diagnosis Using Random Forest.
Proceedings of the Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges, 2017


  Loading...