Madhu Raka
Orcid: 0000-0003-4722-6501
According to our database1,
Madhu Raka
authored at least 24 papers
between 2004 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
Discret. Math. Algorithms Appl., August, 2024
2022
CoRR, 2022
CoRR, 2022
2020
Polyadic constacyclic codes over a non-chain ring $$\mathbb {F}_{q}[u,v]/\langle f(u),g(v), uv-vu\rangle $$.
J. Appl. Math. Comput., February, 2020
CoRR, 2020
Some generalizations of good integers and their applications in the study of self-dual negacyclic codes.
Adv. Math. Commun., 2020
Skew constacyclic codes over a non-chain ring ${\mathbb {F}}_{q}[u, v]/\langle f(u), g(v), uv-vu\rangle $.
Appl. Algebra Eng. Commun. Comput., 2020
2019
Skew constacyclic codes over a non-chain ring F<sub>q</sub>[u, v]/〈f(u), g(v), uv-vu〉.
CoRR, 2019
2018
Int. J. Inf. Coding Theory, 2018
Discret. Math. Algorithms Appl., 2018
Polyadic cyclic codes over a non-chain ring $\mathbb{F}_{q}[u, v]/\langle f(u), g(v), uv-vu\rangle$.
CoRR, 2018
CoRR, 2018
Quadratic residue codes over the ring 𝔽<sub>p</sub>[u]/〈 u<sup>m</sup> - u 〉 and their Gray images.
Cryptogr. Commun., 2018
2017
(1-2u 3)-constacyclic codes and quadratic residue codes over 𝔽<sub>p</sub>[u]/〈u<sup>4</sup>-u〉.
Cryptogr. Commun., 2017
2016
Quadratic residue codes over the ring $\mathbb{F}_{p}[u]/\langle u^m-u\rangle$ and their Gray images.
CoRR, 2016
2013
Self-dual and self-orthogonal negacyclic codes of length 2<i>p</i><sup><i>n</i></sup> over a finite field.
Finite Fields Their Appl., 2013
2012
Corrigendum to "Minimal cyclic codes of length p<sup>n</sup>q" [Finite Fields and Their Applications 9 (4) (2003) 432-448].
Finite Fields Their Appl., 2012
Adv. Math. Commun., 2012
2008
Irreducible Cyclic Codes of Length 2n.
Ars Comb., 2008
2007
Finite Fields Their Appl., 2007
Irreducible cyclic codes of length 2pn.
Ars Comb., 2007
2004
Cyclotomic numbers and primitive idempotents in the ring GF(q)[x]/(x<sup>p<sup>n</sup></sup>-1).
Finite Fields Their Appl., 2004