Louis Wiesmann
Orcid: 0000-0003-0985-7433
According to our database1,
Louis Wiesmann
authored at least 22 papers
between 2021 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
Joint Intrinsic and Extrinsic Calibration of Perception Systems Utilizing a Calibration Environment.
IEEE Robotics Autom. Lett., October, 2024
PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency.
IEEE Trans. Robotics, 2024
Efficient LiDAR Bundle Adjustment for Multi-Scan Alignment Utilizing Continuous-Time Trajectories.
CoRR, 2024
Proceedings of the IEEE International Conference on Robotics and Automation, 2024
2023
IEEE Robotics Autom. Lett., November, 2023
Robotics Auton. Syst., 2023
IEEE Robotics Autom. Lett., 2023
IEEE Robotics Autom. Lett., 2023
KISS-ICP: In Defense of Point-to-Point ICP - Simple, Accurate, and Robust Registration If Done the Right Way.
IEEE Robotics Autom. Lett., 2023
High Precision Leaf Instance Segmentation for Phenotyping in Point Clouds Obtained Under Real Field Conditions.
IEEE Robotics Autom. Lett., 2023
IEEE Robotics Autom. Lett., 2023
Toward Reproducible Version-Controlled Perception Platforms: Embracing Simplicity in Autonomous Vehicle Dataset Acquisition.
Proceedings of the 25th IEEE International Conference on Intelligent Transportation Systems, 2023
Temporal Consistent 3D LiDAR Representation Learning for Semantic Perception in Autonomous Driving.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023
2022
IEEE Robotics Autom. Lett., 2022
Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments.
IEEE Robotics Autom. Lett., 2022
Contrastive Instance Association for 4D Panoptic Segmentation Using Sequences of 3D LiDAR Scans.
IEEE Robotics Autom. Lett., 2022
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022
Proceedings of the 2022 International Conference on Robotics and Automation, 2022
2021
Moving Object Segmentation in 3D LiDAR Data: A Learning-Based Approach Exploiting Sequential Data.
IEEE Robotics Autom. Lett., 2021
Mapping the Static Parts of Dynamic Scenes from 3D LiDAR Point Clouds Exploiting Ground Segmentation.
Proceedings of the 10th European Conference on Mobile Robots, 2021