Long-Tu Yuan

Orcid: 0000-0002-4602-5911

According to our database1, Long-Tu Yuan authored at least 21 papers between 2017 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
On the Turán Number of Edge Blow-Ups of Cliques.
SIAM J. Discret. Math., 2024

A Stability Result of the Pósa Lemma.
SIAM J. Discret. Math., 2024

Extremal graphs for even linear forests in bipartite graphs.
Discuss. Math. Graph Theory, 2024

Exact generalized Turán numbers for even linear forests.
Discret. Math., 2024

A note on the stability results of the number of cliques in graphs with given matching number.
Discret. Appl. Math., 2024

2023
The Turán number for the edge blow-up of trees: The missing case.
Discret. Math., June, 2023

The structure of graphs with given lengths of cycles.
Discret. Math., 2023

2022
Extremal graphs for edge blow-up of graphs.
J. Comb. Theory B, 2022

Extremal Graphs for Two Vertex-Disjoint Copies of a Clique.
Graphs Comb., 2022

Extremal graphs of the pth power of paths.
Eur. J. Comb., 2022

Graphs with large maximum degree containing no edge-critical graphs.
Eur. J. Comb., 2022

A note on the 2-power of Hamilton cycles.
Discret. Math., 2022

2021
Turán numbers for disjoint paths.
J. Graph Theory, 2021

Extremal graphs for odd wheels.
J. Graph Theory, 2021

The Maximum Number of Copies of $K_{r, s}$ in Graphs Without Long Cycles or Paths.
Electron. J. Comb., 2021

2020
On the anti-Ramsey numbers of linear forests.
Discret. Math., 2020

2019
A note on Turán's theorem.
Appl. Math. Comput., 2019

2018
Extremal graphs for the k-flower.
J. Graph Theory, 2018

2017
A Variation of the Erdős-Sós Conjecture in Bipartite Graphs.
Graphs Comb., 2017

The Turán number of disjoint copies of paths.
Discret. Math., 2017

On the Erdős-Sós Conjecture for graphs on n = k + 4 vertices.
Ars Math. Contemp., 2017


  Loading...