Léo Perrin
Orcid: 0000-0002-4722-7005
According to our database1,
Léo Perrin
authored at least 63 papers
between 2014 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
IACR Trans. Symmetric Cryptol., 2024
IACR Cryptol. ePrint Arch., 2024
The Algebraic Freelunch Efficient Gröbner Basis Attacks Against Arithmetization-Oriented Primitives.
IACR Cryptol. ePrint Arch., 2024
2023
Des. Codes Cryptogr., March, 2023
Propagation of Subspaces in Primitives with Monomial Sboxes: Applications to Rescue and Variants of the AES.
IACR Trans. Symmetric Cryptol., 2023
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: ttAnemoi Permutations and ttJive Compression Mode.
Proceedings of the Advances in Cryptology - CRYPTO 2023, 2023
2022
Dataset, January, 2022
IACR Trans. Symmetric Cryptol., 2022
IACR Trans. Symmetric Cryptol., 2022
IACR Cryptol. ePrint Arch., 2022
Finite Fields Their Appl., 2022
Cryptogr. Commun., 2022
2021
IACR Trans. Symmetric Cryptol., 2021
Internal Symmetries and Linear Properties: Full-permutation Distinguishers and Improved Collisions on Gimli.
J. Cryptol., 2021
2020
IACR Trans. Symmetric Cryptol., 2020
IACR Trans. Symmetric Cryptol., 2020
J. Cryptol., 2020
IACR Cryptol. ePrint Arch., 2020
Out of Oddity - New Cryptanalytic Techniques against Symmetric Primitives Optimized for Integrity Proof Systems.
IACR Cryptol. ePrint Arch., 2020
On subspaces of Kloosterman zeros and permutations of the form L<sub>1</sub>(x<sup>-1</sup>)+L<sub>2</sub>(x).
CoRR, 2020
On Subspaces of Kloosterman Zeros and Permutations of the Form L<sub>1(x<sup>-1</sup>)+L<sub>2(x)</sub></sub>.
Proceedings of the Arithmetic of Finite Fields - 8th International Workshop, 2020
Proceedings of the Advances in Cryptology - CRYPTO 2020, 2020
Proceedings of the Advances in Cryptology - CRYPTO 2020, 2020
2019
IACR Trans. Symmetric Cryptol., 2019
J. Cryptogr. Eng., 2019
IACR Cryptol. ePrint Arch., 2019
IACR Cryptol. ePrint Arch., 2019
IACR Cryptol. ePrint Arch., 2019
Finite Fields Their Appl., 2019
Cryptogr. Commun., 2019
Proceedings of the Advances in Cryptology - ASIACRYPT 2019, 2019
2017
PhD thesis, 2017
A Generalisation of Dillon's APN Permutation With the Best Known Differential and Nonlinear Properties for All Fields of Size 2<sup>4k+2</sup>.
IEEE Trans. Inf. Theory, 2017
IACR Cryptol. ePrint Arch., 2017
IACR Cryptol. ePrint Arch., 2017
2016
IACR Trans. Symmetric Cryptol., 2016
IACR Trans. Symmetric Cryptol., 2016
Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem (Full Version).
IACR Cryptol. ePrint Arch., 2016
IACR Cryptol. ePrint Arch., 2016
IACR Cryptol. ePrint Arch., 2016
A generalisation of Dillon's APN permutation with the best known differential and linear properties for all fields of size 2<sup>4k+2</sup>.
IACR Cryptol. ePrint Arch., 2016
IACR Cryptol. ePrint Arch., 2016
Proceedings of the Fast Software Encryption - 23rd International Conference, 2016
Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem.
Proceedings of the Advances in Cryptology - CRYPTO 2016, 2016
Proceedings of the Advances in Cryptology - ASIACRYPT 2016, 2016
2015
IACR Cryptol. ePrint Arch., 2015
IACR Cryptol. ePrint Arch., 2015
IACR Cryptol. ePrint Arch., 2015
IACR Cryptol. ePrint Arch., 2015
2014
IACR Cryptol. ePrint Arch., 2014