Lennard Kamenski

Orcid: 0000-0001-5227-6891

According to our database1, Lennard Kamenski authored at least 14 papers between 2010 and 2023.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
Adaptive Mesh Refinement for Electromagnetic Simulation.
CoRR, 2023

2022
Non-simplicial Delaunay meshing via approximation by radical partitions.
CoRR, 2022

2021
Sharp Bounds on the Smallest Eigenvalue of Finite Element Equations with Arbitrary Meshes without Regularity Assumptions.
SIAM J. Numer. Anal., 2021

Conditioning of implicit Runge-Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes.
J. Comput. Appl. Math., 2021

2019
On the smallest eigenvalue of finite element equations with meshes without regularity assumptions.
CoRR, 2019

2018
On the mesh nonsingularity of the moving mesh PDE method.
Math. Comput., 2018

Tetrahedral mesh improvement using moving mesh smoothing, lazy searching flips, and RBF surface reconstruction.
Comput. Aided Des., 2018

2016
Stability of Explicit One-Step Methods for P1-Finite Element Approximation of Linear Diffusion Equations on Anisotropic Meshes.
SIAM J. Numer. Anal., 2016

2015
A geometric discretization and a simple implementation for variational mesh generation and adaptation.
J. Comput. Phys., 2015

2014
How a Nonconvergent Recovered Hessian Works in Mesh Adaptation.
SIAM J. Numer. Anal., 2014

Conditioning of finite element equations with arbitrary anisotropic meshes.
Math. Comput., 2014

2013
Stability of Explicit Runge-Kutta Methods for High Order Finite Element Approximation of Linear Parabolic Equations.
Proceedings of the Numerical Mathematics and Advanced Applications - ENUMATH 2013, 2013

2012
A study on using hierarchical basis error estimates in anisotropic mesh adaptation for the finite element method.
Eng. Comput., 2012

2010
A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates.
J. Comput. Phys., 2010


  Loading...