Lenka Zdeborová

Orcid: 0000-0002-8377-3978

According to our database1, Lenka Zdeborová authored at least 177 papers between 2006 and 2024.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Optimal Inference in Contextual Stochastic Block Models.
Trans. Mach. Learn. Res., 2024

Rigorous Dynamical Mean-Field Theory for Stochastic Gradient Descent Methods.
SIAM J. Math. Data Sci., 2024

Bilinear Sequence Regression: A Model for Learning from Long Sequences of High-dimensional Tokens.
CoRR, 2024

Building Conformal Prediction Intervals with Approximate Message Passing.
CoRR, 2024

Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
CoRR, 2024

The phase diagram of compressed sensing with ℓ<sub>0</sub>-norm regularization.
CoRR, 2024

Bayes-optimal learning of an extensive-width neural network from quadratically many samples.
CoRR, 2024

Understanding Counting in Small Transformers: The Interplay between Attention and Feed-Forward Layers.
CoRR, 2024

Optimal thresholds and algorithms for a model of multi-modal learning in high dimensions.
CoRR, 2024

Fundamental limits of weak learnability in high-dimensional multi-index models.
CoRR, 2024

Integer Traffic Assignment Problem: Algorithms and Insights on Random Graphs.
CoRR, 2024

Analysis of Bootstrap and Subsampling in High-dimensional Regularized Regression.
CoRR, 2024

A phase transition between positional and semantic learning in a solvable model of dot-product attention.
CoRR, 2024

Asymptotic generalization error of a single-layer graph convolutional network.
CoRR, 2024

The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks: Breaking the Curse of Information and Leap Exponents.
Proceedings of the Forty-first International Conference on Machine Learning, 2024

Asymptotics of feature learning in two-layer networks after one gradient-step.
Proceedings of the Forty-first International Conference on Machine Learning, 2024

Analysis of Learning a Flow-based Generative Model from Limited Sample Complexity.
Proceedings of the Twelfth International Conference on Learning Representations, 2024

Fundamental Limits of Non-Linear Low-Rank Matrix Estimation.
Proceedings of the Thirty Seventh Annual Conference on Learning Theory, June 30, 2024

2023
Neural-prior stochastic block model.
Mach. Learn. Sci. Technol., September, 2023

Error scaling laws for kernel classification under source and capacity conditions.
Mach. Learn. Sci. Technol., September, 2023

Learning curves for the multi-class teacher-student perceptron.
Mach. Learn. Sci. Technol., March, 2023

Bayesian reconstruction of memories stored in neural networks from their connectivity.
PLoS Comput. Biol., January, 2023

Tree-AMP: Compositional Inference with Tree Approximate Message Passing.
J. Mach. Learn. Res., 2023

Sampling with flows, diffusion and autoregressive neural networks: A spin-glass perspective.
CoRR, 2023

Gibbs Sampling the Posterior of Neural Networks.
CoRR, 2023

Compressed sensing with l0-norm: statistical physics analysis and algorithms for signal recovery.
CoRR, 2023

Statistical mechanics of the maximum-average submatrix problem.
CoRR, 2023

Optimal Learning of Deep Random Networks of Extensive-width.
CoRR, 2023

Expectation consistency for calibration of neural networks.
Proceedings of the Uncertainty in Artificial Intelligence, 2023

Universality laws for Gaussian mixtures in generalized linear models.
Proceedings of the Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, 2023

High-dimensional Asymptotics of Denoising Autoencoders.
Proceedings of the Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, 2023

Compressed sensing with ℓ0-norm: statistical physics analysis & algorithms for signal recovery.
Proceedings of the IEEE Information Theory Workshop, 2023

Bayes-optimal Learning of Deep Random Networks of Extensive-width.
Proceedings of the International Conference on Machine Learning, 2023

On double-descent in uncertainty quantification in overparametrized models.
Proceedings of the International Conference on Artificial Intelligence and Statistics, 2023

2022
Probing transfer learning with a model of synthetic correlated datasets.
Mach. Learn. Sci. Technol., 2022

A study of uncertainty quantification in overparametrized high-dimensional models.
CoRR, 2022

Disordered Systems Insights on Computational Hardness.
CoRR, 2022

Planted matching problems on random hypergraphs.
CoRR, 2022

The planted XY model: thermodynamics and inference.
CoRR, 2022

Gaussian Universality of Linear Classifiers with Random Labels in High-Dimension.
CoRR, 2022

(Dis)assortative Partitions on Random Regular Graphs.
CoRR, 2022

Theoretical characterization of uncertainty in high-dimensional linear classification.
CoRR, 2022

Error Rates for Kernel Classification under Source and Capacity Conditions.
CoRR, 2022

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks.
Proceedings of the Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, 2022

Subspace clustering in high-dimensions: Phase transitions & Statistical-to-Computational gap.
Proceedings of the Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, 2022

Multi-layer State Evolution Under Random Convolutional Design.
Proceedings of the Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, 2022

Optimal denoising of rotationally invariant rectangular matrices.
Proceedings of the Mathematical and Scientific Machine Learning, 2022

2021
Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem.
Mach. Learn. Sci. Technol., September, 2021

The Spiked Matrix Model With Generative Priors.
IEEE Trans. Inf. Theory, 2021

Large deviations in the perceptron model and consequences for active learning.
Mach. Learn. Sci. Technol., 2021

Aligning random graphs with a sub-tree similarity message-passing algorithm.
CoRR, 2021

Perturbative construction of mean-field equations in extensive-rank matrix factorization and denoising.
CoRR, 2021

Learning Gaussian Mixtures with Generalised Linear Models: Precise Asymptotics in High-dimensions.
CoRR, 2021

Capturing the learning curves of generic features maps for realistic data sets with a teacher-student model.
CoRR, 2021

Learning Gaussian Mixtures with Generalized Linear Models: Precise Asymptotics in High-dimensions.
Proceedings of the Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, 2021

Learning curves of generic features maps for realistic datasets with a teacher-student model.
Proceedings of the Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, 2021

Generalization Error Rates in Kernel Regression: The Crossover from the Noiseless to Noisy Regime.
Proceedings of the Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, 2021

Solvable Model for Inheriting the Regularization through Knowledge Distillation.
Proceedings of the Mathematical and Scientific Machine Learning, 2021

Construction of optimal spectral methods in phase retrieval.
Proceedings of the Mathematical and Scientific Machine Learning, 2021

The Gaussian equivalence of generative models for learning with shallow neural networks.
Proceedings of the Mathematical and Scientific Machine Learning, 2021

Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed.
Proceedings of the 38th International Conference on Machine Learning, 2021

2020
Multilayer Modularity Belief Propagation to Assess Detectability of Community Structure.
SIAM J. Math. Data Sci., 2020

The planted k-factor problem.
CoRR, 2020

Epidemic mitigation by statistical inference from contact tracing data.
CoRR, 2020

The Gaussian equivalence of generative models for learning with two-layer neural networks.
CoRR, 2020

Recovery thresholds in the sparse planted matching problem.
CoRR, 2020

TRAMP: Compositional Inference with TRee Approximate Message Passing.
CoRR, 2020

The role of regularization in classification of high-dimensional noisy Gaussian mixture.
CoRR, 2020

Thresholds of descending algorithms in inference problems.
CoRR, 2020

Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification.
Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, 2020

Optimization and Generalization of Shallow Neural Networks with Quadratic Activation Functions.
Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, 2020

Complex Dynamics in Simple Neural Networks: Understanding Gradient Flow in Phase Retrieval.
Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, 2020

Phase retrieval in high dimensions: Statistical and computational phase transitions.
Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, 2020

Generalization error in high-dimensional perceptrons: Approaching Bayes error with convex optimization.
Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, 2020

Exact asymptotics for phase retrieval and compressed sensing with random generative priors.
Proceedings of Mathematical and Scientific Machine Learning, 2020

Rademacher complexity and spin glasses: A link between the replica and statistical theories of learning.
Proceedings of Mathematical and Scientific Machine Learning, 2020

An Alternating Projection-Image Domains Algorithm for Spectral CT.
Proceedings of the 17th IEEE International Symposium on Biomedical Imaging, 2020

The Role of Regularization in Classification of High-dimensional Noisy Gaussian Mixture.
Proceedings of the 37th International Conference on Machine Learning, 2020

Generalisation error in learning with random features and the hidden manifold model.
Proceedings of the 37th International Conference on Machine Learning, 2020

2019
Decoding From Pooled Data: Phase Transitions of Message Passing.
IEEE Trans. Inf. Theory, 2019

Decoding from Pooled Data: Sharp Information-Theoretic Bounds.
SIAM J. Math. Data Sci., 2019

Blind calibration for compressed sensing: State evolution and an online algorithm.
CoRR, 2019

Modelling the influence of data structure on learning in neural networks.
CoRR, 2019

Modularity belief propagation on multilayer networks to detect significant community structure.
CoRR, 2019

Who is Afraid of Big Bad Minima? Analysis of Gradient-Flow in a Spiked Matrix-Tensor Model.
CoRR, 2019

High-temperature Expansions and Message Passing Algorithms.
CoRR, 2019

On the Universality of Noiseless Linear Estimation with Respect to the Measurement Matrix.
CoRR, 2019

Passed & Spurious: analysing descent algorithms and local minima in spiked matrix-tensor model.
CoRR, 2019

Generalisation dynamics of online learning in over-parameterised neural networks.
CoRR, 2019

Who is Afraid of Big Bad Minima? Analysis of gradient-flow in spiked matrix-tensor models.
Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, 2019

Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup.
Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, 2019

Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models.
Proceedings of the 36th International Conference on Machine Learning, 2019

Blind Calibration for Sparse Regression: A State Evolution Analysis.
Proceedings of the 8th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2019

2018
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-dimensional Inference.
CoRR, 2018

Rank-one matrix estimation: analysis of algorithmic and information theoretic limits by the spatial coupling method.
CoRR, 2018

Approximate message-passing for convex optimization with non-separable penalties.
CoRR, 2018

Approximate Survey Propagation for Statistical Inference.
CoRR, 2018

Typology of phase transitions in Bayesian inference problems.
CoRR, 2018

On Minimal Sets to Destroy the k-Core in Random Networks.
CoRR, 2018

On the glassy nature of the hard phase in inference problems.
CoRR, 2018

Entropy and mutual information in models of deep neural networks.
Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, 2018

The committee machine: Computational to statistical gaps in learning a two-layers neural network.
Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, 2018

Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models.
Proceedings of the Conference On Learning Theory, 2018

2017
Phase Transitions, Optimal Errors and Optimality of Message-Passing in Generalized Linear Models.
CoRR, 2017

Constrained Low-rank Matrix Estimation: Phase Transitions, Approximate Message Passing and Applications.
CoRR, 2017

Phase transitions in the $q$-coloring of random hypergraphs.
CoRR, 2017

Information-theoretic thresholds from the cavity method.
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, 2017

Multi-layer generalized linear estimation.
Proceedings of the 2017 IEEE International Symposium on Information Theory, 2017

Statistical and computational phase transitions in spiked tensor estimation.
Proceedings of the 2017 IEEE International Symposium on Information Theory, 2017

Streaming Bayesian inference: Theoretical limits and mini-batch approximate message-passing.
Proceedings of the 55th Annual Allerton Conference on Communication, 2017

2016
Phase Transitions and Sample Complexity in Bayes-Optimal Matrix Factorization.
IEEE Trans. Inf. Theory, 2016

Fast and simple decycling and dismantling of networks.
CoRR, 2016

Phase diagram of matrix compressed sensing.
CoRR, 2016

Fast Randomized Semi-Supervised Clustering.
CoRR, 2016

Network dismantling.
CoRR, 2016

The large deviations of the whitening process in random constraint satisfaction problems.
CoRR, 2016

Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula.
Proceedings of the Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, 2016

Mutual information in rank-one matrix estimation.
Proceedings of the 2016 IEEE Information Theory Workshop, 2016

Clustering from sparse pairwise measurements.
Proceedings of the IEEE International Symposium on Information Theory, 2016

Phase transitions and optimal algorithms in high-dimensional Gaussian mixture clustering.
Proceedings of the 54th Annual Allerton Conference on Communication, 2016

2015
Statistical physics of inference: Thresholds and algorithms.
CoRR, 2015

Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation.
Proceedings of the Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, 2015

Spectral detection in the censored block model.
Proceedings of the IEEE International Symposium on Information Theory, 2015

Phase transitions in sparse PCA.
Proceedings of the IEEE International Symposium on Information Theory, 2015

Swept Approximate Message Passing for Sparse Estimation.
Proceedings of the 32nd International Conference on Machine Learning, 2015

Adaptive damping and mean removal for the generalized approximate message passing algorithm.
Proceedings of the 2015 IEEE International Conference on Acoustics, 2015

MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel.
Proceedings of the 53rd Annual Allerton Conference on Communication, 2015

Spectral detection on sparse hypergraphs.
Proceedings of the 53rd Annual Allerton Conference on Communication, 2015

2014
Reweighted Belief Propagation and Quiet Planting for Random K-SAT.
J. Satisf. Boolean Model. Comput., 2014

Phase transitions in semisupervised clustering of sparse networks.
CoRR, 2014

Bayesian signal reconstruction for 1-bit compressed sensing.
CoRR, 2014

Blind Sensor Calibration using Approximate Message Passing.
CoRR, 2014

Spectral density of the non-backtracking operator.
CoRR, 2014

Sparse Estimation with the Swept Approximated Message-Passing Algorithm.
CoRR, 2014

Dynamic message-passing equations for models with unidirectional dynamics.
CoRR, 2014

Percolation on sparse networks.
CoRR, 2014

Properties of spatial coupling in compressed sensing.
CoRR, 2014

Spectral Clustering of graphs with the Bethe Hessian.
Proceedings of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, 2014

Variational free energies for compressed sensing.
Proceedings of the 2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, June 29, 2014

On convergence of approximate message passing.
Proceedings of the 2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, June 29, 2014

2013
Inferring the origin of an epidemy with dynamic message-passing algorithm
CoRR, 2013

Spectral redemption: clustering sparse networks.
CoRR, 2013

Dynamics and termination cost of spatially coupled mean-field models.
CoRR, 2013

The hard-core model on random graphs revisited.
CoRR, 2013

Blind Calibration in Compressed Sensing using Message Passing Algorithms.
Proceedings of the Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013

Robust error correction for real-valued signals via message-passing decoding and spatial coupling.
Proceedings of the 2013 IEEE Information Theory Workshop, 2013

Phase diagram and approximate message passing for blind calibration and dictionary learning.
Proceedings of the 2013 IEEE International Symposium on Information Theory, 2013

Non-adaptive pooling strategies for detection of rare faulty items.
Proceedings of the IEEE International Conference on Communications, 2013

Compressed sensing under matrix uncertainty: Optimum thresholds and robust approximate message passing.
Proceedings of the IEEE International Conference on Acoustics, 2013

2012
Belief Propagation Reconstruction for Discrete Tomography
CoRR, 2012

Model Selection for Degree-corrected Block Models
CoRR, 2012

Comparative Study for Inference of Hidden Classes in Stochastic Block Models
CoRR, 2012

Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices
CoRR, 2012

Message passing for quantified Boolean formulas
CoRR, 2012

The condensation transition in random hypergraph 2-coloring.
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, 2012

Compressed sensing of approximately-sparse signals: Phase transitions and optimal reconstruction.
Proceedings of the 50th Annual Allerton Conference on Communication, 2012

2011
Quiet Planting in the Locked Constraint Satisfaction Problems.
SIAM J. Discret. Math., 2011

Statistical physics-based reconstruction in compressed sensing
CoRR, 2011

Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications
CoRR, 2011

Phase transition in the detection of modules in sparse networks
CoRR, 2011

2010
Adversarial Satisfiability Problem
CoRR, 2010

Message Passing for Integrating and Assessing Renewable Generation in a Redundant Power Grid.
Proceedings of the 43rd Hawaii International International Conference on Systems Science (HICSS-43 2010), 2010

2009
Conjecture on the maximum cut and bisection width in random regular graphs
CoRR, 2009

Belief propagation for graph partitioning
CoRR, 2009

Message Passing for Optimization and Control of Power Grid: Toy Model of Distribution with Ancillary Lines
CoRR, 2009

Hiding Quiet Solutions in Random Constraint Satisfaction Problems
CoRR, 2009

2008
The 3D Dimer and Ising problems revisited.
Eur. J. Comb., 2008

Constraint satisfaction problems with isolated solutions are hard
CoRR, 2008

Statistical Physics of Hard Optimization Problems
CoRR, 2008

Exhaustive enumeration unveils clustering and freezing in random 3-SAT
CoRR, 2008

Hard constraint satisfaction problems
CoRR, 2008

2007
Gibbs states and the set of solutions of random constraint satisfaction problems.
Proc. Natl. Acad. Sci. USA, 2007

A Hike in the Phases of the 1-in-3 Satisfiability
CoRR, 2007

Phase Transitions and Computational Difficulty in Random Constraint Satisfaction Problems
CoRR, 2007

Random subcubes as a toy model for constraint satisfaction problems
CoRR, 2007

Phase Transitions in the Coloring of Random Graphs
CoRR, 2007

2006
The number of matchings in random graphs
CoRR, 2006


  Loading...