Lekbir Afraites
Orcid: 0000-0001-7182-7986
According to our database1,
Lekbir Afraites
authored at least 19 papers
between 2008 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
2008
2010
2012
2014
2016
2018
2020
2022
2024
0
1
2
3
4
5
6
7
4
6
4
2
2
1
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2025
On a computational paradigm for a class of fractional order direct and inverse problems in terms of physics-informed neural networks with the attention mechanism.
J. Comput. Sci., 2025
Learning primal-dual approach for space-dependent diffusion coefficient identification in fractional diffusion equations.
J. Comput. Phys., 2025
Existence of solution for a coupled diffusion PDE system for various noise reduction.
J. Comput. Appl. Math., 2025
Nonsmooth optimization method for determining nonsmooth potential parameter in nonlinear subdiffusion equation.
Commun. Nonlinear Sci. Numer. Simul., 2025
2024
Boundary shape reconstruction with Robin condition: existence result, stability analysis, and inversion via multiple measurements.
Comput. Appl. Math., July, 2024
Mach. Vis. Appl., May, 2024
Physics-informed convolution gated recurrent unit network for solving an inverse problem.
Neurocomputing, 2024
Expert Syst. Appl., 2024
A robust alternating direction method of multipliers numerical scheme for solving geometric inverse problems in a shape optimization setting.
Comput. Math. Appl., 2024
Alternating direction multiplier method to estimate an unknown source term in the time-fractional diffusion equation.
Comput. Math. Appl., 2024
2023
J. Nonlinear Sci., December, 2023
An artificial neural network approach to identify the parameter in a nonlinear subdiffusion model.
Commun. Nonlinear Sci. Numer. Simul., October, 2023
An Optimal Fluid Optical Flow Registration for Super-resolution with Lamé Parameters Learning.
J. Optim. Theory Appl., May, 2023
An inverse problem of identifying the coefficient in a nonlinear time-fractional diffusion equation.
Comput. Appl. Math., February, 2023
2022
RAIRO Oper. Res., September, 2022
A weighted parameter identification PDE-constrained optimization for inverse image denoising problem.
Vis. Comput., 2022
2021
Signal Process. Image Commun., 2021
A novel image denoising approach based on a non-convex constrained PDE: application to ultrasound images.
Signal Image Video Process., 2021
2008
SIAM J. Control. Optim., 2008