Lars Eldén

Orcid: 0000-0003-2281-856X

According to our database1, Lars Eldén authored at least 30 papers between 1994 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Multiway Spectral Graph Partitioning: Cut Functions, Cheeger Inequalities, and a Simple Algorithm.
SIAM J. Matrix Anal. Appl., March, 2024

2022
Spectral partitioning of large and sparse 3-tensors using low-rank tensor approximation.
Numer. Linear Algebra Appl., 2022

A Krylov-Schur-like method for computing the best rank-(r<sub>1</sub>, r<sub>2</sub>, r<sub>3</sub>) approximation of large and sparse tensors.
Numer. Algorithms, 2022

2020
Analyzing Large and Sparse Tensor Data using Spectral Low-Rank Approximation.
CoRR, 2020

Spectral Partitioning of Large and Sparse Tensors using Low-Rank Tensor Approximation.
CoRR, 2020

2019
Solving bilinear tensor least squares problems and application to Hammerstein identification.
Numer. Linear Algebra Appl., 2019

2014
Solving an Ill-Posed Cauchy Problem for a Two-Dimensional Parabolic PDE with Variable Coefficients Using a Preconditioned GMRES Method.
SIAM J. Sci. Comput., 2014

Best Kronecker Product Approximation of The Blurring Operator in Three Dimensional Image Restoration Problems.
SIAM J. Matrix Anal. Appl., 2014

2013
Computing Semantic Clusters by Semantic Mirroring and Spectral Graph Partitioning.
Math. Comput. Sci., 2013

2012
Solving Ill-Posed Linear Systems with GMRES and a Singular Preconditioner.
SIAM J. Matrix Anal. Appl., 2012

2011
Perturbation Theory and Optimality Conditions for the Best Multilinear Rank Approximation of a Tensor.
SIAM J. Matrix Anal. Appl., 2011

Data Mining, Networks and Dynamics (Dagstuhl Seminar 11451).
Dagstuhl Reports, 2011

2010
3rd Special issue on matrix computations and statistics.
Comput. Stat. Data Anal., 2010

Computing Word Senses by Semantic Mirroring and Spectral Graph Partitioning.
Proceedings of TextGraphs@ACL 2010 Workshop on Graph-based Methods for Natural Language Processing, 2010

2009
A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r<sub>1, </sub> r<sub>2, </sub> r<sub>3)</sub> Approximation of a Tensor.
SIAM J. Matrix Anal. Appl., 2009

2007
Handwritten digit classification using higher order singular value decomposition.
Pattern Recognit., 2007

Non-negative Tensor Factorization Based on Alternating Large-scale Non-negativity-constrained Least Squares.
Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, 2007

Matrix methods in data mining and pattern recognition.
Fundamentals of algorithms 4, SIAM, ISBN: 978-0-89871-626-9, 2007

2005
The maximum likelihood estimate in reduced-rank regression.
Numer. Linear Algebra Appl., 2005

2004
Partial least-squares vs. Lanczos bidiagonalization - I: analysis of a projection method for multiple regression.
Comput. Stat. Data Anal., 2004

2002
Adaptive Eigenvalue Computations Using Newton's Method on the Grassmann Manifold.
SIAM J. Matrix Anal. Appl., 2002

2000
Schur-Type Methods for Solving Least Squares Problems with Toeplitz Structure.
SIAM J. Sci. Comput., 2000

Wavelet and Fourier Methods for Solving the Sideways Heat Equation.
SIAM J. Sci. Comput., 2000

1999
A Procrustes problem on the Stiefel manifold.
Numerische Mathematik, 1999

1998
Approximating minimum norm solutions of rank-deficient least squares problems.
Numer. Linear Algebra Appl., 1998

1996
Fast computation of the principal singular vectors of Toeplitz matrices arising in exponential data modelling.
Signal Process., 1996

1995
Downdating the Rank-Revealing URV Decomposition.
SIAM J. Matrix Anal. Appl., 1995

1994
Block Downdating of Least Squares Solutions.
SIAM J. Matrix Anal. Appl., July, 1994

Accurate Downdating of Least Squares Solutions.
SIAM J. Matrix Anal. Appl., April, 1994

Fast algorithms for exponential data modeling.
Proceedings of ICASSP '94: IEEE International Conference on Acoustics, 1994


  Loading...