Kristoffer G. van der Zee
Orcid: 0000-0002-6830-8031
According to our database1,
Kristoffer G. van der Zee
authored at least 24 papers
between 2006 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
Learning quantities of interest from parametric PDEs: An efficient neural-weighted Minimal Residual approach.
Comput. Math. Appl., 2024
2023
Global-local multidisciplinary optimisation for the evaluation of local constraints on finer meshes in preliminary aircraft design.
Eng. Comput., December, 2023
Eng. Comput., December, 2023
Eng. Comput., February, 2023
A Shape-Newton Method for Free-boundary Problems Subject to The Bernoulli Boundary Condition.
CoRR, 2023
2022
SIAM J. Sci. Comput., 2022
Numerische Mathematik, 2022
Eng. Comput., 2022
Neural Control of Discrete Weak Formulations: Galerkin, Least-Squares and Minimal-Residual Methods with Quasi-Optimal Weights.
CoRR, 2022
2021
A machine-learning minimal-residual (ML-MRes) framework for goal-oriented finite element discretizations.
Comput. Math. Appl., 2021
2020
Discretization of Linear Problems in Banach Spaces: Residual Minimization, Nonlinear Petrov-Galerkin, and Monotone Mixed Methods.
SIAM J. Numer. Anal., 2020
Data-Driven Finite Elements Methods: Machine Learning Acceleration of Goal-Oriented Computations.
CoRR, 2020
Eliminating Gibbs phenomena: A non-linear Petrov-Galerkin method for the convection-diffusion-reaction equation.
Comput. Math. Appl., 2020
2019
Gibbs Phenomena for L<sup>q</sup>-Best Approximation in Finite Element Spaces - Some Examples.
CoRR, 2019
The Discrete-Dual Minimal-Residual Method (DDMRes) for Weak Advection-Reaction Problems in Banach Spaces.
Comput. Methods Appl. Math., 2019
The Convection-Diffusion-Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and Stability of Galerkin's Method.
Comput. Methods Appl. Math., 2019
2018
A Posteriori Error Estimation and Adaptivity for Nonlinear Parabolic Equations using IMEX-Galerkin Discretization of Primal and Dual Equations.
SIAM J. Sci. Comput., 2018
Parallel-In-Space-Time, Adaptive Finite Element Framework for Nonlinear Parabolic Equations.
SIAM J. Sci. Comput., 2018
2016
2014
Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems.
Adv. Model. Simul. Eng. Sci., 2014
2010
Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Shape-Linearization Approach.
SIAM J. Sci. Comput., 2010
Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Domain-Map Linearization Approach.
SIAM J. Sci. Comput., 2010
2006
An H<sup>1</sup>(P<sup>h</sup>)-Coercive Discontinuous Galerkin Formulation for the Poisson Problem: 1D Analysis.
SIAM J. Numer. Anal., 2006