Kristoffer G. van der Zee
Orcid: 0000-0002-6830-8031
According to our database1,
Kristoffer G. van der Zee
authored at least 24 papers
between 2006 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
A Shape-Newton Method for Free-Boundary Problems Subject to the Bernoulli Boundary Condition.
SIAM J. Sci. Comput., 2024
Learning quantities of interest from parametric PDEs: An efficient neural-weighted Minimal Residual approach.
Comput. Math. Appl., 2024
2023
Global-local multidisciplinary optimisation for the evaluation of local constraints on finer meshes in preliminary aircraft design.
Eng. Comput., December, 2023
Eng. Comput., December, 2023
Eng. Comput., February, 2023
2022
SIAM J. Sci. Comput., 2022
Numerische Mathematik, 2022
Eng. Comput., 2022
Neural Control of Discrete Weak Formulations: Galerkin, Least-Squares and Minimal-Residual Methods with Quasi-Optimal Weights.
CoRR, 2022
2021
A machine-learning minimal-residual (ML-MRes) framework for goal-oriented finite element discretizations.
Comput. Math. Appl., 2021
2020
Discretization of Linear Problems in Banach Spaces: Residual Minimization, Nonlinear Petrov-Galerkin, and Monotone Mixed Methods.
SIAM J. Numer. Anal., 2020
Data-Driven Finite Elements Methods: Machine Learning Acceleration of Goal-Oriented Computations.
CoRR, 2020
Eliminating Gibbs phenomena: A non-linear Petrov-Galerkin method for the convection-diffusion-reaction equation.
Comput. Math. Appl., 2020
2019
Gibbs Phenomena for L<sup>q</sup>-Best Approximation in Finite Element Spaces - Some Examples.
CoRR, 2019
The Discrete-Dual Minimal-Residual Method (DDMRes) for Weak Advection-Reaction Problems in Banach Spaces.
Comput. Methods Appl. Math., 2019
The Convection-Diffusion-Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and Stability of Galerkin's Method.
Comput. Methods Appl. Math., 2019
2018
A Posteriori Error Estimation and Adaptivity for Nonlinear Parabolic Equations using IMEX-Galerkin Discretization of Primal and Dual Equations.
SIAM J. Sci. Comput., 2018
Parallel-In-Space-Time, Adaptive Finite Element Framework for Nonlinear Parabolic Equations.
SIAM J. Sci. Comput., 2018
2016
2014
Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems.
Adv. Model. Simul. Eng. Sci., 2014
2010
Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Shape-Linearization Approach.
SIAM J. Sci. Comput., 2010
Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Domain-Map Linearization Approach.
SIAM J. Sci. Comput., 2010
2006
An H<sup>1</sup>(P<sup>h</sup>)-Coercive Discontinuous Galerkin Formulation for the Poisson Problem: 1D Analysis.
SIAM J. Numer. Anal., 2006