Klaus Neymeyr

Orcid: 0000-0002-1464-2851

According to our database1, Klaus Neymeyr authored at least 19 papers between 2002 and 2023.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
Sharp Majorization-Type Cluster Robust Bounds for Block Filters and Eigensolvers.
SIAM J. Matrix Anal. Appl., December, 2023

Convergence analysis of a block preconditioned steepest descent eigensolver with implicit deflation.
Numer. Linear Algebra Appl., October, 2023

2022
Angle-free cluster robust Ritz value bounds for restarted block eigensolvers.
CoRR, 2022

Convergence rates of individual Ritz values in block preconditioned gradient-type eigensolvers.
CoRR, 2022

Majorization-type cluster robust bounds for block filters and eigensolvers.
CoRR, 2022

2019
Cluster robust estimates for block gradient-type eigensolvers.
Math. Comput., 2019

Exponential convergence rates for Batch Normalization: The power of length-direction decoupling in non-convex optimization.
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, 2019

2018
On the Set of Solutions of the Nonnegative Matrix Factorization Problem.
SIAM J. Matrix Anal. Appl., 2018

Towards a Theoretical Understanding of Batch Normalization.
CoRR, 2018

2017
Convergence Theory for Preconditioned Eigenvalue Solvers in a Nutshell.
Found. Comput. Math., 2017

2016
Convergence Analysis of Restarted Krylov Subspace Eigensolvers.
SIAM J. Matrix Anal. Appl., 2016

2014
Iterative minimization of the Rayleigh quotient by block steepest descent iterations.
Numer. Linear Algebra Appl., 2014

2012
A Geometric Convergence Theory for the Preconditioned Steepest Descent Iteration.
SIAM J. Numer. Anal., 2012

2011
Convergence Analysis of Gradient Iterations for the Symmetric Eigenvalue Problem.
SIAM J. Matrix Anal. Appl., 2011

2009
Gradient Flow Approach to Geometric Convergence Analysis of Preconditioned Eigensolvers.
SIAM J. Matrix Anal. Appl., 2009

2005
A note on Inverse Iteration.
Numer. Linear Algebra Appl., 2005

2002
Multilevel Method for Mixed Eigenproblems.
SIAM J. Sci. Comput., 2002

<i>A posteriori</i> error estimation for elliptic eigenproblems.
Numer. Linear Algebra Appl., 2002

A geometric theory for preconditioned inverse iteration applied to a subspace.
Math. Comput., 2002


  Loading...