Klaus Metsch

Orcid: 0000-0001-5183-0782

According to our database1, Klaus Metsch authored at least 60 papers between 1987 and 2023.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2023
On the treewidth of generalized Kneser graphs.
Australas. J Comb., 2023

2022
Erdős-Ko-Rado sets of flags of finite sets.
J. Comb. Theory A, 2022

An algebraic approach to Erdős-Ko-Rado sets of flags in spherical buildings.
J. Comb. Theory A, 2022

On the chromatic number of two generalized Kneser graphs.
Eur. J. Comb., 2022

2021
The Chromatic Number of Two Families of Generalized Kneser Graphs Related to Finite Generalized Quadrangles and Finite Projective 3-Spaces.
Electron. J. Comb., 2021

2020
Perfect 2-Colorings of the Grassmann Graph of Planes.
Electron. J. Comb., 2020

2019
On the smallest non-trivial tight sets in Hermitian polar spaces H(d, q2), d even.
Discret. Math., 2019

Preface to the special issue on finite geometries.
Des. Codes Cryptogr., 2019

2018
Large {0, 1, ..., <i>t</i>}-cliques in dual polar graphs.
J. Comb. Theory A, 2018

2017
A gap result for Cameron-Liebler k-classes.
Discret. Math., 2017

On the maximality of a set of mutually orthogonal Sudoku Latin Squares.
Des. Codes Cryptogr., 2017

On the Smallest Non-Trivial Tight Sets in Hermitian Polar Spaces.
Electron. J. Comb., 2017

2016
A new family of tight sets in Q<sup>+</sup>(5, q).
Des. Codes Cryptogr., 2016

Small tight sets in finite elliptic, parabolic and Hermitian polar spaces.
Comb., 2016

The characterization problem for designs with the parameters of AGd(n, q).
Comb., 2016

A note on Erdős-Ko-Rado sets of generators in Hermitian polar spaces.
Adv. Math. Commun., 2016

2015
On weighted minihypers in finite projective spaces of square order.
Adv. Math. Commun., 2015

2014
An improved bound on the existence of Cameron-Liebler line classes.
J. Comb. Theory A, 2014

A modular equality for Cameron-Liebler line classes.
J. Comb. Theory A, 2014

On the maximum size of Erdős-Ko-Rado sets in $$H(2d+1, q^2)$$.
Des. Codes Cryptogr., 2014

Remarks on polarity designs.
Des. Codes Cryptogr., 2014

2013
Sets of generators blocking all generators in finite classical polar spaces.
J. Comb. Theory A, 2013

Small tight sets of hyperbolic quadrics.
Des. Codes Cryptogr., 2013

A Bound on Permutation Codes.
Electron. J. Comb., 2013

2011
A generalization of a result of Dembowski and Wagner.
Des. Codes Cryptogr., 2011

2010
Small point sets of PG(<i>n</i>, <i>q</i><sup>3</sup>) intersecting each <i>k</i>-subspace in 1 mod <i>q</i> points.
Des. Codes Cryptogr., 2010

2008
Partial ovoids and partial spreads in symplectic and orthogonal polar spaces.
Eur. J. Comb., 2008

Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound.
Des. Codes Cryptogr., 2008

Partial ovoids and partial spreads in hermitian polar spaces.
Des. Codes Cryptogr., 2008

Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound.
Adv. Math. Commun., 2008

2007
The maximum size of a partial spread in H(5, q<sup>2</sup>) is q<sup>3</sup>+1.
J. Comb. Theory A, 2007

Parameters for which the Griesmer bound is not sharp.
Discret. Math., 2007

Characterization results on small blocking sets of the polar spaces <i>Q</i> <sup>+</sup>(2 <i>n</i> + 1, 2) and <i>Q</i> <sup>+</sup>(2 <i>n</i> + 1, 3).
Des. Codes Cryptogr., 2007

2005
Minimal blocking sets of size q<sup>2</sup>+2 of Q(4, q), q an odd prime, do not exist.
Finite Fields Their Appl., 2005

The smallest point sets that meet all generators of <i>H</i>(2<i>n, q</i><sup>2</sup>).
Discret. Math., 2005

Blocking Structures of Hermitian Varieties.
Des. Codes Cryptogr., 2005

2004
Small point sets that meet all generators of Q(2n, p), p>3 prime.
J. Comb. Theory A, 2004

Small Point Sets that Meet All Generators of W(2n+1, iq).
Des. Codes Cryptogr., 2004

Blocking Subspaces By Lines In PG(n, q).
Comb., 2004

2003
On the Characterization of the Folded Halved Cubes by Their Intersection Arrays.
Des. Codes Cryptogr., 2003

2002
Partial linear complexes of PG(3, <i>q</i>).
Discret. Math., 2002

1999
On a Characterization of Bilinear Forms Graphs.
Eur. J. Comb., 1999

Partial-Spreads in.
Des. Codes Cryptogr., 1999

A Bose-Burton Theorem for Elliptic Polar Spaces.
Des. Codes Cryptogr., 1999

A Note on the Cycle Structures of Automorphisms of 2-(v, k, 1) Designs.
Ars Comb., 1999

1997
Characterization of the Folded Johnson Graphs of Small Diameter by their Intersection Arrays.
Eur. J. Comb., 1997

On the Characterization of the Folded Johnson Graphs and the Folded Halved Cubes by their Intersection Arrays.
Eur. J. Comb., 1997

Embedding theorems for locally projective three-dimensional linear spaces.
Discret. Math., 1997

Embedding the Linear Structure of Planar Spaces into Projective Spaces.
Des. Codes Cryptogr., 1997

Blocking <i>s</i>-Dimensional Subspaces by Lines in <i>PG</i>(2<i>s, q</i>).
Comb., 1997

1995
A characterization of Grassmann graphs.
Eur. J. Comb., 1995

Quasi-residual designs, 1 1/2-designs, and strongly regular multigraphs.
Discret. Math., 1995

On the Number of Lines in Planar Spaces.
Comb., 1995

1993
On the Size of a Maximal Partial Spread.
Des. Codes Cryptogr., 1993

1992
Linear spaces withn<sup>2</sup> + n + 2lines.
Eur. J. Comb., 1992

Linear spaces with few lines.
Discret. Math., 1992

1991
Improvement of Bruck's Completion Theorem.
Des. Codes Cryptogr., 1991

1989
Embedding finite planar spaces into 3-dimensional projective spaces.
J. Comb. Theory A, 1989

1988
An optimal bound for embedding linear spaces into projective planes.
Discret. Math., 1988

1987
Embedding finite linear spaces in projective planes, II.
Discret. Math., 1987


  Loading...