Kazem Khashyarmanesh

Orcid: 0000-0003-3314-7298

According to our database1, Kazem Khashyarmanesh authored at least 16 papers between 2013 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
$ \mathbb{Z}_{p^r}\mathbb{Z}_{p^s}\mathbb{Z}_{p^t} $-additive cyclic codes.
Int. J. Appl. Math. Comput. Sci., 2024

On the distinguishing chromatic number of the Kronecker products of graphs.
AKCE Int. J. Graphs Comb., 2024

Mixed metric dimension over (edge) corona products.
AKCE Int. J. Graphs Comb., 2024

2023
ℤ4R-additive cyclic and constacyclic codes and MDSS codes.
Discret. Math. Algorithms Appl., January, 2023

2022
On the metric dimension of Cayley graphs.
AKCE Int. J. Graphs Comb., 2022

2021
Counting short cycles of (c, d)-regular bipartite graphs.
Discret. Math. Algorithms Appl., 2021

2018
Repeated-root two-dimensional constacyclic codes of length 2<i>p</i><sup><i>s</i></sup>.2<sup><i>k</i></sup>.
Finite Fields Their Appl., 2018

On The Generalized Cayley Graphs Of Power Set Rings And Hamiltonian Cycles.
Ars Comb., 2018

2017
On The Planarity Of The Regular Digraph Of Ideals Of Commutative Rings.
Ars Comb., 2017

Planar, Outerplanar And Ring Graph Cozero-Divisor Graphs.
Ars Comb., 2017

Some cyclic codes from some monomials.
Appl. Algebra Eng. Commun. Comput., 2017

2016
Characterizations of some two-dimensional cyclic codes correspond to the ideals of F[x, y]/<x<sup>s</sup>-1, y<sup>2<sup>k</sup></sup>-1>.
Finite Fields Their Appl., 2016

2015
Non-commuting graphs of rings.
Discret. Math. Algorithms Appl., 2015

A generalization of commuting graphs.
Discret. Math. Algorithms Appl., 2015

2014
The intersection graph of ideals of a poset.
Discret. Math. Algorithms Appl., 2014

2013
Total graphs of Polynomial Rings and Rings of fractions.
Discret. Math. Algorithms Appl., 2013


  Loading...