Karim Samei

Orcid: 0000-0002-0088-6281

According to our database1, Karim Samei authored at least 17 papers between 2017 and 2024.

Collaborative distances:
  • Dijkstra number2 of six.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
The Homogeneous Gray image of linear codes over the Galois ring GR(4, m).
Cryptogr. Commun., May, 2024

Torsion codes of a α-constacyclic code over Fpm[u]〈u3〉.
Discret. Math., 2024

$\mathbb{F}_{p^{m}}\mathbb{F}_{p^{m}}{[u^2]}$-additive skew cyclic codes of length $2p^s $.
Adv. Math. Commun., 2024

${\mathbb {F}}_{q^{2}}$-double cyclic codes with respect to the Hermitian inner product.
Appl. Algebra Eng. Commun. Comput., 2024

2023
Skew constacyclic codes of lengths <i>p</i><sup><i>s</i></sup> and 2<i>p</i><sup><i>s</i></sup> over Fpm+uFpm.
Finite Fields Their Appl., October, 2023

Constacyclic duadic codes over ${\mathbb {F}}_4$.
Appl. Algebra Eng. Commun. Comput., March, 2023

2022
Double skew cyclic codes over $$\mathbb {F}_q$$.
Comput. Appl. Math., April, 2022

The linearity of Carlet's Gray image of linear codes over ${\mathbb {Z}}_{8}$.
Des. Codes Cryptogr., 2022

Isodual codes over $\mathbb {F}_{q}$ from a multiplier.
Cryptogr. Commun., 2022

Codes over $ \frak m $-adic completion rings.
Adv. Math. Commun., 2022

2021
On self-dual skew cyclic codes of length <i>p</i><sup><i>s</i></sup> over Fpm+uFpm.
Discret. Math., 2021

Decoding of cyclic codes over the ring $$F_2+uF_2+u^2F_2$$.
Comput. Appl. Math., 2021

2020
Fq-linear codes over Fq-algebras.
Finite Fields Their Appl., 2020

2019
Additive codes over Galois rings.
Finite Fields Their Appl., 2019

2018
Singleton bounds for R-additive codes.
Adv. Math. Commun., 2018

2017
Cyclic R-additive codes.
Discret. Math., 2017

Quadratic residue codes over 픽<sub>p<sup>r</sup></sub>+u<sub>1</sub>픽<sub>p<sup>r</sup></sub>+u<sub>2</sub>픽<sub>p<sup>r</sup></sub>+...+u<sub>t</sub>픽<sub>p<sup>r</sup></sub>.
Adv. Math. Commun., 2017


  Loading...