Julien Clinton Sprott
Orcid: 0000-0001-7014-3283Affiliations:
- University of Wisconsin, USA
According to our database1,
Julien Clinton Sprott
authored at least 89 papers
between 1993 and 2023.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on zbmath.org
-
on orcid.org
-
on id.loc.gov
-
on d-nb.info
On csauthors.net:
Bibliography
2023
Similar Master Stability Functions for Different Coupling Schemes in Basic Chaotic Systems.
Int. J. Bifurc. Chaos, August, 2023
Chaotic oscillators with two types of semi-fractal equilibrium points: Bifurcations, multistability, and fractal basins of attraction.
Commun. Nonlinear Sci. Numer. Simul., June, 2023
WorldScientific, ISBN: 9789811277535, 2023
2022
Int. J. Bifurc. Chaos, December, 2022
Int. J. Bifurc. Chaos, 2022
Effects of Amplitude, Maximal Lyapunov Exponent, and Kaplan-Yorke Dimension of Dynamical Oscillators on Master Stability Function.
Int. J. Bifurc. Chaos, 2022
2021
Appl. Math. Comput., 2021
2020
Int. J. Bifurc. Chaos, 2020
Int. J. Bifurc. Chaos, 2020
2019
Int. J. Bifurc. Chaos, 2019
2018
IET Commun., 2018
IEEE Access, 2018
Fractals and Dynamics in Mathematics, Science, and the Arts: Theory and Applications 2, WorldScientific, ISBN: 9789813237155, 2018
2017
Int. J. Bifurc. Chaos, 2017
Detecting Hidden Chaotic Regions and Complex Dynamics in the Self-Exciting Homopolar Disc Dynamo.
Int. J. Bifurc. Chaos, 2017
Int. J. Bifurc. Chaos, 2017
Int. J. Bifurc. Chaos, 2017
Int. J. Bifurc. Chaos, 2017
Commun. Nonlinear Sci. Numer. Simul., 2017
2016
IEEE Trans. Circuits Syst. II Express Briefs, 2016
Dynamics at Infinity, Degenerate Hopf and Zero-Hopf Bifurcation for Kingni-Jafari System with Hidden Attractors.
Int. J. Bifurc. Chaos, 2016
The Equivalence of Dissipation from Gibbs' Entropy Production with Phase-Volume Loss in Ergodic Heat-Conducting Oscillators.
Int. J. Bifurc. Chaos, 2016
Commun. Nonlinear Sci. Numer. Simul., 2016
2015
Int. J. Bifurc. Chaos, 2015
Int. J. Bifurc. Chaos, 2015
Int. J. Bifurc. Chaos, 2015
Int. J. Bifurc. Chaos, 2015
IEICE Electron. Express, 2015
A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems.
Commun. Nonlinear Sci. Numer. Simul., 2015
Commun. Nonlinear Sci. Numer. Simul., 2015
2014
IEEE Trans. Circuits Syst. II Express Briefs, 2014
Int. J. Bifurc. Chaos, 2014
Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor.
Int. J. Bifurc. Chaos, 2014
A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints.
Int. J. Bifurc. Chaos, 2014
Artificial neural networks: powerful tools for modeling chaotic behavior in the nervous system.
Frontiers Comput. Neurosci., 2014
Biomed. Signal Process. Control., 2014
2013
Int. J. Bifurc. Chaos, 2013
Simplest 3D continuous-Time quadratic Systems as Candidates for Generating multiscroll Chaotic attractors.
Int. J. Bifurc. Chaos, 2013
A Rigorous determination of the Overall Period in the Structure of a Chaotic Attractor.
Int. J. Bifurc. Chaos, 2013
2011
Int. J. Bifurc. Chaos, 2011
Dynamic Patterns of Postural Fluctuations during Quiet standing: a Recurrence Quantification Approach.
Int. J. Bifurc. Chaos, 2011
Int. J. Bifurc. Chaos, 2011
2010
IEEE Trans. Circuits Syst. II Express Briefs, 2010
Int. J. Bifurc. Chaos, 2010
Int. J. Bifurc. Chaos, 2010
Int. J. Bifurc. Chaos, 2010
Identification of Dynamic Patterns of Body sway during Quiet standing: is IT a Nonlinear Process?
Int. J. Bifurc. Chaos, 2010
2009
2008
Int. J. Bifurc. Chaos, 2008
2007
2004
2001
1998
1997
1996
1995
1994
1993