Juha H. Videman

Orcid: 0000-0001-8194-1635

According to our database1, Juha H. Videman authored at least 17 papers between 2007 and 2023.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
Stabilised finite element method for Stokes problem with nonlinear slip condition.
CoRR, 2023

2022
First-order system least-squares finite element method for singularly perturbed Darcy equations.
CoRR, 2022

Mortaring for linear elasticity using low order finite elements.
CoRR, 2022

2021
Nitsche's Method for Kirchhoff Plates.
SIAM J. Sci. Comput., 2021

Stabilized finite elements for Tresca friction problem.
CoRR, 2021

A degenerate elliptic-parabolic system arising in competitive contaminant transport.
CoRR, 2021

2020
On Nitsche's Method for Elastic Contact Problems.
SIAM J. Sci. Comput., 2020

Discontinuous Galerkin methods for a dispersive wave hydro-sediment-morphodynamic model.
CoRR, 2020

Discontinuous Galerkin methods for a dispersive wave hydro-morphodynamic model with bed-load transport.
CoRR, 2020

2019
Error analysis of Nitsche's mortar method.
Numerische Mathematik, 2019

Nitsche's Master-Slave Method for Elastic Contact Problems.
Proceedings of the Numerical Mathematics and Advanced Applications ENUMATH 2019 - European Conference, Egmond aan Zee, The Netherlands, September 30, 2019

2018
A Posteriori Estimates for Conforming Kirchhoff Plate Elements.
SIAM J. Sci. Comput., 2018

2017
Mixed and Stabilized Finite Element Methods for the Obstacle Problem.
SIAM J. Numer. Anal., 2017

On Finite Element Formulations for the Obstacle Problem - Mixed and Stabilised Methods.
Comput. Methods Appl. Math., 2017

2015
On the Error Analysis of Stabilized Finite Element Methods for the Stokes Problem.
SIAM J. Numer. Anal., 2015

2013
A streamline diffusion finite element method for the viscous shallow water equations.
J. Comput. Appl. Math., 2013

2007
A modified nonlinear Reynolds equation for thin viscous flows in lubrication.
Asymptot. Anal., 2007


  Loading...