Juan Vicente Gutiérrez-Santacreu

Orcid: 0000-0002-9274-8950

According to our database1, Juan Vicente Gutiérrez-Santacreu authored at least 16 papers between 2008 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Exploring numerical blow-up phenomena for the Keller-Segel-Navier-Stokes equations.
J. Num. Math., June, 2024

2022
Bound-preserving finite element approximations of the Keller-Segel equations.
CoRR, 2022

2021
Analysis of a fully discrete approximation for the classical Keller-Segel model: Lower and <i>a priori</i> bounds.
Comput. Math. Appl., 2021

2020
Analysis of a fully discrete approximation for the classical Keller-Segel model: lower and \emph{a priori} bounds.
CoRR, 2020

Numerical solution for an aggregation equation with degenerate diffusion.
Appl. Math. Comput., 2020

2019
From a cell model with active motion to a Hele-Shaw-like system: a numerical approach.
Numerische Mathematik, 2019

2018
Finite element discretization of a Stokes-like model arising in plasma physics.
J. Comput. Phys., 2018

2017
Inf-Sup Stable Finite Element Methods for the Landau-Lifshitz-Gilbert and Harmonic Map Heat Flow Equations.
SIAM J. Numer. Anal., 2017

Convergence to Suitable Weak Solutions for a Finite Element Approximation of the Navier-Stokes Equations with Numerical Subgrid Scale Modeling.
J. Sci. Comput., 2017

2015
A Time-Splitting Finite-Element Stable Approximation for the Ericksen-Leslie Equations.
SIAM J. Sci. Comput., 2015

2012
Uniform-in-time error estimates for spectral Galerkin approximations of a mass diffusion model.
Math. Comput., 2012

2011
Error estimates of a linear decoupled Euler-FEM scheme for a mass diffusion model.
Numerische Mathematik, 2011

Finite element approximation of nematic liquid crystal flows using a saddle-point structure.
J. Comput. Phys., 2011

2010
Long-Term Stability Estimates and Existence of a Global Attractor in a Finite Element Approximation of the Navier-Stokes Equations with Numerical Subgrid Scale Modeling.
SIAM J. Numer. Anal., 2010

2008
Conditional Stability and Convergence of a Fully Discrete Scheme for Three-Dimensional Navier-Stokes Equations with Mass Diffusion.
SIAM J. Numer. Anal., 2008

Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion.
Math. Comput., 2008


  Loading...