José Yunier Bello Cruz

Orcid: 0000-0002-7877-5688

According to our database1, José Yunier Bello Cruz authored at least 30 papers between 2010 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
On the centralization of the circumcentered-reflection method.
Math. Program., May, 2024

A successive centralized circumcentered-reflection method for the convex feasibility problem.
Comput. Optim. Appl., January, 2024

A Finitely Convergent Circumcenter Method for the Convex Feasibility Problem.
SIAM J. Optim., 2024

2023
Circumcentric directions of cones.
Optim. Lett., May, 2023

On the weak and strong convergence of modified forward-backward-half-forward splitting methods.
Optim. Lett., April, 2023

On FISTA with a relative error rule.
Comput. Optim. Appl., March, 2023

Analytical Study and Efficient Evaluation of the Josephus Function.
CoRR, 2023

2022
Quadratic Growth Conditions and Uniqueness of Optimal Solution to Lasso.
J. Optim. Theory Appl., 2022

2021
Infeasibility and Error Bound Imply Finite Convergence of Alternating Projections.
SIAM J. Optim., 2021

On the circumcentered-reflection method for the convex feasibility problem.
Numer. Algorithms, 2021

On the Linear Convergence of Forward-Backward Splitting Method: Part I - Convergence Analysis.
J. Optim. Theory Appl., 2021

The circumcentered-reflection method achieves better rates than alternating projections.
Comput. Optim. Appl., 2021

2020
The block-wise circumcentered-reflection method.
Comput. Optim. Appl., 2020

2018
On the linear convergence of the circumcentered-reflection method.
Oper. Res. Lett., 2018

Circumcentering the Douglas-Rachford method.
Numer. Algorithms, 2018

2016
On the convergence of the forward-backward splitting method with linesearches.
Optim. Methods Softw., 2016

Optimal Rates of Linear Convergence of Relaxed Alternating Projections and Generalized Douglas-Rachford Methods for Two Subspaces.
Numer. Algorithms, 2016

A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces.
J. Glob. Optim., 2016

A semi-smooth Newton method for a special piecewise linear system with application to positively constrained convex quadratic programming.
J. Comput. Appl. Math., 2016

On the global convergence of the inexact semi-smooth Newton method for absolute value equation.
Comput. Optim. Appl., 2016

2015
Full convergence of an approximate projection method for nonsmooth variational inequalities.
Math. Comput. Simul., 2015

2014
A Subgradient-Like Algorithm for Solving Vector Convex Inequalities.
J. Optim. Theory Appl., 2014

A Direct Splitting Method for Nonsmooth Variational Inequalities.
J. Optim. Theory Appl., 2014

A Steepest Descent-Like Method for Variable Order Vector Optimization Problems.
J. Optim. Theory Appl., 2014

Level bundle-like algorithms for convex optimization.
J. Glob. Optim., 2014

The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle.
J. Approx. Theory, 2014

Subgradient algorithms for solving variable inequalities.
Appl. Math. Comput., 2014

2013
A Subgradient Method for Vector Optimization Problems.
SIAM J. Optim., 2013

A Two-Phase Algorithm for a Variational Inequality Formulation of Equilibrium Problems.
J. Optim. Theory Appl., 2013

2010
Convergence of direct methods for paramonotone variational inequalities.
Comput. Optim. Appl., 2010


  Loading...