José Antonio Ezquerro
Orcid: 0000-0001-8120-167X
According to our database1,
José Antonio Ezquerro
authored at least 52 papers
between 1996 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
J. Comput. Appl. Math., 2024
On the existence and the approximation of solutions of Volterra integral equations of the second kind.
Appl. Math. Comput., 2024
2023
J. Comput. Appl. Math., May, 2023
2022
J. Comput. Appl. Math., 2022
J. Comput. Appl. Math., 2022
2021
Comput. Math. Methods, November, 2021
2019
Numer. Algorithms, 2019
J. Comput. Appl. Math., 2019
Appl. Math. Lett., 2019
2018
Starting points for Newton's method under a center Lipschitz condition for the second derivative.
J. Comput. Appl. Math., 2018
Extending the domain of starting points for Newton's method under conditions on the second derivative.
J. Comput. Appl. Math., 2018
Appl. Math. Lett., 2018
Appl. Math. Lett., 2018
2017
On the Existence of Solutions of Nonlinear Fredholm Integral Equations from Kantorovich's Technique.
Algorithms, 2017
A study of the influence of center conditions on the domain of parameters of Newton's method by using recurrence relations.
Adv. Comput. Math., 2017
2016
J. Comput. Appl. Math., 2016
Enlarging the domain of starting points for Newton's method under center conditions on the first Fréchet-derivative.
J. Complex., 2016
2015
Numer. Linear Algebra Appl., 2015
A family of iterative methods that uses divided differences of first and second orders.
Numer. Algorithms, 2015
Center conditions on high order derivatives in the semilocal convergence of Newton's method.
J. Complex., 2015
Appl. Math. Comput., 2015
Appl. Math. Comput., 2015
On the Accessibility of Newton's Method under a Hölder Condition on the First Derivative.
Algorithms, 2015
2014
Numer. Linear Algebra Appl., 2014
Numer. Algorithms, 2014
A semilocal convergence result for Newton's method under generalized conditions of Kantorovich.
J. Complex., 2014
2013
On the efficiency of two variants of Kurchatov's method for solving nonlinear systems.
Numer. Algorithms, 2013
Math. Comput. Model., 2013
On the local convergence of Newton's method under generalized conditions of Kantorovich.
Appl. Math. Lett., 2013
2012
J. Comput. Appl. Math., 2012
Solving non-differentiable equations by a new one-point iterative method with memory.
J. Complex., 2012
Comput. Math. Appl., 2012
Appl. Math. Comput., 2012
A variant of the Newton-Kantorovich theorem for nonlinear integral equations of mixed Hammerstein type.
Appl. Math. Comput., 2012
2011
On Iterative Methods with Accelerated Convergence for Solving Systems of Nonlinear Equations.
J. Optim. Theory Appl., 2011
Solving nonlinear integral equations of Fredholm type with high order iterative methods.
J. Comput. Appl. Math., 2011
J. Comput. Appl. Math., 2011
2010
J. Comput. Appl. Math., 2010
2009
An improvement of the region of accessibility of Chebyshev's method from Newton's method.
Math. Comput., 2009
Appl. Math. Comput., 2009
2008
2007
Int. J. Comput. Math., 2007
2005
Appl. Math. Comput., 2005
2002
Int. J. Comput. Math., 2002
1998
Int. J. Comput. Math., 1998
Int. J. Comput. Math., 1998
A construction procedure of iterative methods with cubical convergence II: Another convergence approach.
Appl. Math. Comput., 1998
1996