Jonathan A. Sherratt

Affiliations:
  • Heriot-Watt University, Edinburgh, UK


According to our database1, Jonathan A. Sherratt authored at least 22 papers between 1993 and 2019.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2019
How do dispersal rates affect the transition from periodic to irregular spatio-temporal oscillations in invasive predator-prey systems?
Appl. Math. Lett., 2019

2018
How Does Nonlocal Dispersal Affect the Selection and Stability of Periodic Traveling Waves?
SIAM J. Appl. Math., 2018

2017
Periodic Traveling Waves Generated by Invasion in Cyclic Predator-Prey Systems: The Effect of Unequal Dispersal.
SIAM J. Appl. Math., 2017

2016
Invasion Generates Periodic Traveling Waves (Wavetrains) in Predator-Prey Models with Nonlocal Dispersal.
SIAM J. Appl. Math., 2016

2014
Periodic Traveling Waves in Integrodifferential Equations for Nonlocal Dispersal.
SIAM J. Appl. Dyn. Syst., 2014

2013
Pattern Solutions of the Klausmeier Model for Banded Vegetation in Semiarid Environments V: The Transition from Patterns to Desert.
SIAM J. Appl. Math., 2013

Pattern Solutions of the Klausmeier Model for Banded Vegetation in Semiarid Environments IV: Slowly Moving Patterns and Their Stability.
SIAM J. Appl. Math., 2013

Stability Switches in a Host-Pathogen Model as the Length of a Time Delay Increases.
J. Nonlinear Sci., 2013

Numerical continuation of boundaries in parameter space between stable and unstable periodic travelling wave (wavetrain) solutions of partial differential equations.
Adv. Comput. Math., 2013

2012
Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations.
Appl. Math. Comput., 2012

Turing Patterns in Deserts.
Proceedings of the How the World Computes, 2012

2010
Patterns of Sources and Sinks in the Complex Ginzburg-Landau Equation with Zero Linear Dispersion.
SIAM J. Appl. Dyn. Syst., 2010

2009
Absolute Stability of Wavetrains Can Explain Spatiotemporal Dynamics in Reaction-Diffusion Systems of Lambda-Omega Type.
SIAM J. Appl. Dyn. Syst., 2009

2003
Periodic Travelling Wave Selection by Dirichlet Boundary Conditions in Oscillatory Reaction-Diffusion Systems.
SIAM J. Appl. Math., 2003

2002
Mathematical Models for Cell-Matrix Interactions during Dermal Wound Healing.
Int. J. Bifurc. Chaos, 2002

2001
Nonlinear Analysis of Juxtacrine Patterns.
SIAM J. Appl. Math., 2001

2000
Traveling Wave Solutions of a Mathematical Model for Tumor Encapsulation.
SIAM J. Appl. Math., 2000

Spatial Noise Stabilizes Periodic Wave Patterns in Oscillatory Systems on Finite Domains.
SIAM J. Appl. Math., 2000

A Mathematical Model for Spatially Varying Extracellular Matrix Alignment.
SIAM J. Appl. Math., 2000

1997
On the Propagation of Calcium Waves in an Inhomogeneous Medium.
SIAM J. Appl. Math., 1997

1994
On the Evolution of Periodic Plane Waves in Reaction-Diffusion Systems of Lambda-Omega Type.
SIAM J. Appl. Math., 1994

1993
Cellular Growth Control and Travelling Waves of Cancer.
SIAM J. Appl. Math., 1993


  Loading...