Jie Peng
Orcid: 0000-0002-0704-3789Affiliations:
- Shanghai Normal University, Shanghai, China
According to our database1,
Jie Peng
authored at least 36 papers
between 2010 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
Cryptogr. Commun., March, 2024
Inf. Process. Lett., February, 2024
Finite Fields Their Appl., February, 2024
Finite Fields Their Appl., January, 2024
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2024
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2024
Four Classes of Bivariate Permutation Polynomials over Finite Fields of Even Characteristic.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2024
2023
Cryptogr. Commun., July, 2023
IEEE Trans. Inf. Theory, May, 2023
On the Number of Affine Equivalence Classes of Vectorial Boolean Functions and <i>q</i>-Ary Functions.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., March, 2023
On the equivalence between a new family of APN quadrinomials and the power APN functions.
Cryptogr. Commun., March, 2023
2022
IEEE Trans. Inf. Theory, 2022
Generic Constructions of (Boolean and Vectorial) Bent Functions and Their Consequences.
IEEE Trans. Inf. Theory, 2022
Finite Fields Their Appl., 2022
2021
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2021
A New 10-Variable Cubic Bent Function Outside the Completed Maiorana-McFarland Class.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2021
Finite Fields Their Appl., 2021
Discret. Math., 2021
2020
Two classes of permutation trinomials with Niho exponents over finite fields with even characteristic.
Finite Fields Their Appl., 2020
On constructions and properties of (n, m)-functions with maximal number of bent components.
Des. Codes Cryptogr., 2020
Permutation polynomials $${x^{{2^{k + 1}} + 3}} + a{x^{{2^k} + 2}} + bx$$x2k+1+3+ax2k+2+bx over $${F_{{2^{2k}}}}$$F22k and their differential uniformity.
Sci. China Inf. Sci., 2020
Characterizing differential support of vectorial Boolean functions using the Walsh transform.
Sci. China Inf. Sci., 2020
Cryptogr. Commun., 2020
IEEE Access, 2020
2019
2018
More New Classes of Differentially 4-Uniform Permutations with Good Cryptographic Properties.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2018
2014
The Degree of Two Classes of 3rd Order Correlation Immune Symmetric Boolean Functions.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2014
2012
IEEE Trans. Inf. Theory, 2012
Constructing Rotation Symmetric Boolean Functions with Maximum Algebraic Immunity on an Odd Number of Variables.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2012
2011
On Symmetric Boolean Functions With High Algebraic Immunity on Even Number of Variables.
IEEE Trans. Inf. Theory, 2011
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2011
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2011
2010
Constructions of cryptographically significant boolean functions using primitive polynomials.
IEEE Trans. Inf. Theory, 2010