Jiaxiang Cai
Orcid: 0000-0001-7683-1271
According to our database1,
Jiaxiang Cai
authored at least 32 papers
between 2009 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
2010
2012
2014
2016
2018
2020
2022
2024
0
1
2
3
4
5
6
1
2
1
5
1
2
3
4
3
1
2
1
2
1
2
1
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2025
Local energy-preserving scalar auxiliary variable approaches for general multi-symplectic Hamiltonian PDEs.
J. Comput. Phys., 2025
2024
Statistical Modeling of the Effectiveness of Preventive Maintenance for Repairable Systems.
Technometrics, 2024
Efficient invariant-preserving scheme for the N-coupled nonlinear Schrödinger equations.
Appl. Math. Lett., 2024
2023
High-order conservative schemes for the nonlinear Schrödinger equation in the semiclassical limit.
Appl. Math. Lett., October, 2023
2022
Compact Exponential Conservative Approaches for the Schrödinger Equation in the Semiclassical Regimes.
SIAM J. Sci. Comput., 2022
The exponential invariant energy quadratization approach for general multi-symplectic Hamiltonian PDEs.
J. Comput. Appl. Math., 2022
IISE Trans., 2022
Linearly implicit local energy-preserving algorithm for a class of multi-symplectic Hamiltonian PDEs.
Comput. Appl. Math., 2022
Efficient dissipation-preserving scheme for the damped nonlinear Schrödinger equation in three dimensions.
Appl. Math. Lett., 2022
2021
Contamination Source Identification: A Bayesian Framework Integrating Physical and Statistical Models.
IEEE Trans. Ind. Informatics, 2021
2020
Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs.
J. Comput. Phys., 2020
Appl. Math. Lett., 2020
2019
Comput. Phys. Commun., 2019
Efficient mass- and energy-preserving schemes for the coupled nonlinear Schrödinger-Boussinesq system.
Appl. Math. Lett., 2019
Efficient energy-preserving wavelet collocation schemes for the coupled nonlinear Schrödinger-Boussinesq system.
Appl. Math. Comput., 2019
2018
Decoupled local/global energy-preserving schemes for the <i>N</i>-coupled nonlinear Schrödinger equations.
J. Comput. Phys., 2018
Efficient high-order structure-preserving methods for the generalized Rosenau-type equation with power law nonlinearity.
Commun. Nonlinear Sci. Numer. Simul., 2018
Efficient schemes for the coupled Schrödinger-KdV equations: Decoupled and conserving three invariants.
Appl. Math. Lett., 2018
Optimal error estimate for energy-preserving splitting schemes for Maxwell's equations.
Appl. Math. Comput., 2018
2017
An energy-conserving method for stochastic Maxwell equations with multiplicative noise.
J. Comput. Phys., 2017
A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation.
J. Comput. Phys., 2017
Local energy-preserving algorithms for nonlinear fourth-order Schrödinger equation with trapped term.
Appl. Math. Comput., 2017
2016
Numerical Analysis of AVF Methods for Three-Dimensional Time-Domain Maxwell's Equations.
J. Sci. Comput., 2016
2015
Two Energy-Conserved Splitting Methods for Three-Dimensional Time-Domain Maxwell's Equations and the Convergence Analysis.
SIAM J. Numer. Anal., 2015
Convergence of time-splitting energy-conserved symplectic schemes for 3D Maxwell's equations.
Appl. Math. Comput., 2015
2014
Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs.
J. Comput. Phys., 2014
2013
Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system.
J. Comput. Phys., 2013
J. Comput. Phys., 2013
2011
Some linearly and non-linearly implicit schemes for the numerical solutions of the regularized long-wave equation.
Appl. Math. Comput., 2011
2010
J. Comput. Appl. Math., 2010
Appl. Math. Comput., 2010
2009
Comput. Phys. Commun., 2009