Jian Gao
Orcid: 0000-0002-7307-2828Affiliations:
- Shandong University of Technology, School of Mathematics and Statistics, Zibo, China
- Nankai University, Chern Institute of Mathematics and LPMC, Tianjin, China (PhD 2015)
According to our database1,
Jian Gao
authored at least 84 papers
between 2013 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
Hulls of constacyclic codes over finite non-chain rings and their applications in quantum codes construction.
Quantum Inf. Process., January, 2024
Finite Fields Their Appl., 2024
2023
Discret. Math., September, 2023
Finite Fields Their Appl., June, 2023
Des. Codes Cryptogr., March, 2023
J. Appl. Math. Comput., February, 2023
New MDS operator quantum error-correcting codes derived from constacyclic codes over $\mathbb {F}_{q^2}+v\mathbb {F}_{q^2}$.
Quantum Inf. Process., 2023
Quantum Inf. Process., 2023
2022
J. Appl. Math. Comput., February, 2022
$$\pmb {{\mathbb {F}}}_q$$-Linear skew cyclic codes over $$\pmb {{\mathbb {F}}}_{q^2}$$ and their applications of quantum codes construction.
J. Appl. Math. Comput., February, 2022
Maximal entanglement EAQECCs from cyclic and constacyclic codes over ${\mathbb {F}}_q+v_1{\mathbb {F}}_q+\cdots +v_{s-1}{\mathbb {F}}_q$.
Quantum Inf. Process., 2022
(x<sup>n-(a+bw), ξ</sup> , η )-skew constacyclic codes over $\mathbb {F}_{q}+w\mathbb {F}_{q}$ and their applications in quantum codes.
Quantum Inf. Process., 2022
Des. Codes Cryptogr., 2022
2021
$${\pmb {{\mathbb {Z}}}}_p{\pmb {{\mathbb {Z}}}}_p[v]$$-additive cyclic codes are asymptotically good.
J. Appl. Math. Comput., June, 2021
Cryptogr. Commun., 2021
IEEE Access, 2021
2020
Self-Dual Binary $[8m, \, \, 4m]$ -Codes Constructed by Left Ideals of the Dihedral Group Algebra $\mathbb{F}_2[D_{8m}]$.
IEEE Trans. Inf. Theory, 2020
\({\mathbb {F}}_qR\) -linear skew constacyclic codes and their application of constructing quantum codes.
Quantum Inf. Process., 2020
Finite Fields Their Appl., 2020
Adv. Math. Commun., 2020
IEEE Access, 2020
2019
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2019
On the Linear Complexity of Binary Generalized Cyclotomic Sequences of Period 2<i>p</i><sup><i>m</i>+1</sup><i>q</i><sup><i>n</i>+1</sup>.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2019
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2019
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2019
Finite Fields Their Appl., 2019
MacDonald codes over the ring $${\mathbb {F}}_{p}+v{\mathbb {F}}_{p}+v^2{\mathbb {F}}_{p}$$.
Comput. Appl. Math., 2019
New non-binary quantum codes from constacyclic codes over $ \mathbb{F}_q[u, v]/\langle u^{2}-1, v^{2}-v, uv-vu\rangle $.
Adv. Math. Commun., 2019
Quantum codes from cyclic codes over the ring 𝔽<sub>q</sub> + v<sub>1</sub>𝔽<sub>q</sub> + ⋯ + v<sub>r</sub> 𝔽<sub>q</sub>.
Appl. Algebra Eng. Commun. Comput., 2019
2018
Constacyclic codes over the ring (𝔽<sub>q</sub>+v𝔽<sub>q</sub>+v<sup>2</sup>𝔽<sub>q</sub>) and their applications of constructing new non-binary quantum codes.
Quantum Inf. Process., 2018
<i>u</i>-Constacyclic codes over 𝔽<sub>p</sub>+u𝔽<sub>p</sub> and their applications of constructing new non-binary quantum codes.
Quantum Inf. Process., 2018
Bounds on covering radius of linear codes with Chinese Euclidean distance over the finite non chain ring F2+vF2.
Inf. Process. Lett., 2018
Constacyclic codes over the ring F<sub><i>p</i></sub> + <i>v</i>F<sub><i>p</i></sub> and their applications of constructing new non-binary quantum codes.
Int. J. Inf. Coding Theory, 2018
Int. J. Inf. Coding Theory, 2018
A Kind of Disjoint Cyclic Perfect Mendelsohn Difference Family and Its Applications in Strictly Optimal FHSs.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2018
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2018
Deterministic Constructions of Compressed Sensing Matrices Based on Affine Singular Linear Space over Finite Fields.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2018
Self-Dual Cyclic Codes over Z<sub>4</sub>[u]/<u<sup>2</sup>-1> and Their Applications of Z<sub>4</sub>-Self-Dual Codes Construction.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2018
A minimum distance bound for 2-dimension <i>λ</i>-quasi-twisted codes over finite fields.
Finite Fields Their Appl., 2018
Discret. Math. Algorithms Appl., 2018
A class of repeated-root constacyclic codes over 𝔽<sub>p<sup>m</sup></sub>[u]/〈u<sup>e</sup>〉 of Type 2.
CoRR, 2018
Adv. Math. Commun., 2018
Constacyclic codes of length np<sup>s</sup> over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
Adv. Math. Commun., 2018
2017
A Class of Optimal One-Coincidence Frequency-Hopping Sequence Sets with Composite Length.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2017
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2017
Discret. Math. Algorithms Appl., 2017
Cryptogr. Commun., 2017
1-Generator quasi-cyclic and generalized quasi-cyclic codes over the ring ℤ<sub>4</sub>[u]/〈u<sup>2</sup>-1〉.
Appl. Algebra Eng. Commun. Comput., 2017
Some classes of linear codes over ℤ<sub>4</sub>+vℤ<sub>4</sub> and their applications to construct good and new ℤ<sub>4</sub>-linear codes.
Appl. Algebra Eng. Commun. Comput., 2017
2016
Construction of one-gray weight codes and two-Gray weight codes over ℤ<sub>4</sub> + <i>u</i>ℤ<sub>4</sub>.
J. Syst. Sci. Complex., 2016
Int. J. Found. Comput. Sci., 2016
Int. J. Comput. Math., 2016
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2016
On a Class of (δ+α<i>u</i><sup>2</sup>)-Constacyclic Codes over F<sub><i>q</i></sub>[<i>u</i>]/〈<i>u</i><sup>4</sup>〉.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2016
A Chinese remainder theorem approach to skew generalized quasi-cyclic codes over finite fields.
Cryptogr. Commun., 2016
2015
Linear Codes and (1+<i>uv</i>)-Constacyclic Codes over <i>R</i>[<i>v</i>]/(<i>v</i><sup>2</sup>+<i>v</i>).
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2015
Discret. Math. Algorithms Appl., 2015
Discret. Math., 2015
Des. Codes Cryptogr., 2015
Constacyclic codes of length p<sup>s</sup>n over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
CoRR, 2015
On a class of (δ+αu<sup>2</sup>)-constacyclic codes over 𝔽<sub>q</sub>[u]/〈u<sup>4</sup>〉.
CoRR, 2015
2014
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2014
2013
Des. Codes Cryptogr., 2013