Jian Gao

Orcid: 0000-0002-7307-2828

Affiliations:
  • Shandong University of Technology, School of Mathematics and Statistics, Zibo, China
  • Nankai University, Chern Institute of Mathematics and LPMC, Tianjin, China (PhD 2015)


According to our database1, Jian Gao authored at least 84 papers between 2013 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
On generalized quasi-cyclic codes over Z4.
Discret. Math., March, 2024

Hulls of constacyclic codes over finite non-chain rings and their applications in quantum codes construction.
Quantum Inf. Process., January, 2024

Weight distribution of double cyclic codes over Fq+uFq.
Finite Fields Their Appl., 2024

2023
New MDS EAQECCs derived from constacyclic codes over Fq2+vFq2.
Discret. Math., September, 2023

Hulls of double cyclic codes.
Finite Fields Their Appl., June, 2023

Weight distributions of generalized quasi-cyclic codes over Fq+uFq.
Finite Fields Their Appl., June, 2023

Weight distributions of Q2DC codes over finite fields.
Des. Codes Cryptogr., March, 2023

n-Dimensional quasi-cyclic codes over finite chain rings.
J. Appl. Math. Comput., February, 2023

New MDS operator quantum error-correcting codes derived from constacyclic codes over $\mathbb {F}_{q^2}+v\mathbb {F}_{q^2}$.
Quantum Inf. Process., 2023

New MDS EAQECCs from constacyclic codes over finite non-chain rings.
Quantum Inf. Process., 2023

Minimal linear codes from defining sets over Fp+uFp.
Discret. Math., 2023

2022
$${\mathbb {F}}_qR$$-Linear skew cyclic codes.
J. Appl. Math. Comput., June, 2022

n-Dimension quasi-twisted codes of arbitrary length over finite fields.
J. Appl. Math. Comput., February, 2022

$$\pmb {{\mathbb {F}}}_q$$-Linear skew cyclic codes over $$\pmb {{\mathbb {F}}}_{q^2}$$ and their applications of quantum codes construction.
J. Appl. Math. Comput., February, 2022

Maximal entanglement EAQECCs from cyclic and constacyclic codes over ${\mathbb {F}}_q+v_1{\mathbb {F}}_q+\cdots +v_{s-1}{\mathbb {F}}_q$.
Quantum Inf. Process., 2022

(x<sup>n-(a+bw), ξ</sup> , η )-skew constacyclic codes over $\mathbb {F}_{q}+w\mathbb {F}_{q}$ and their applications in quantum codes.
Quantum Inf. Process., 2022

Weight distribution of double cyclic codes over Galois rings.
Des. Codes Cryptogr., 2022

On generalized quasi-cyclic codes over Z<sub>4</sub>.
CoRR, 2022

Complete weight enumerator of torsion codes.
Adv. Math. Commun., 2022

2021
$${\pmb {{\mathbb {Z}}}}_p{\pmb {{\mathbb {Z}}}}_p[v]$$-additive cyclic codes are asymptotically good.
J. Appl. Math. Comput., June, 2021

Bounds on Covering Radius of F<sub>2</sub>R-Linear Codes.
IEEE Commun. Lett., 2021

(σ, δ)-Skew quasi-cyclic codes over the ring $\mathbb {Z}_{4}+u\mathbb {Z}_{4}$.
Cryptogr. Commun., 2021

Bounds on Covering Radius of Some Codes Over F₂ + uF₂ + vF₂ + uvF₂.
IEEE Access, 2021

On Z₂Z₂[u³]-Additive Cyclic and Complementary Dual Codes.
IEEE Access, 2021

2020
Self-Dual Binary $[8m, \, \, 4m]$ -Codes Constructed by Left Ideals of the Dihedral Group Algebra $\mathbb{F}_2[D_{8m}]$.
IEEE Trans. Inf. Theory, 2020

\({\mathbb {F}}_qR\) -linear skew constacyclic codes and their application of constructing quantum codes.
Quantum Inf. Process., 2020

ℤ<sub>4</sub>-Double Cyclic Codes Are Asymptotically Good.
IEEE Commun. Lett., 2020

A bound on the minimum distance of generalized quasi-twisted codes.
Finite Fields Their Appl., 2020

Some results on ℤ<sub>pℤ<sub>p[v]</sub></sub>-additive cyclic codes.
Adv. Math. Commun., 2020

Some Results on Images of a Class of λ-Constacyclic Codes Over Finite Fields.
IEEE Access, 2020

2019
On the Glide of the 3x+1 Problem.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2019

On the Linear Complexity of Binary Generalized Cyclotomic Sequences of Period 2<i>p</i><sup><i>m</i>+1</sup><i>q</i><sup><i>n</i>+1</sup>.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2019

A Note on the Zero-Difference Balanced Functions with New Parameters.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2019

A Generalized Construction of Codebook Asymptotically Meeting the Welch Bound.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2019

A class of repeated-root constacyclic codes over Fpm[u]/〈ue〉 of Type 2.
Finite Fields Their Appl., 2019

MacDonald codes over the ring $${\mathbb {F}}_{p}+v{\mathbb {F}}_{p}+v^2{\mathbb {F}}_{p}$$.
Comput. Appl. Math., 2019

New non-binary quantum codes from constacyclic codes over $ \mathbb{F}_q[u, v]/\langle u^{2}-1, v^{2}-v, uv-vu\rangle $.
Adv. Math. Commun., 2019

New Non-Binary Quantum Codes Derived From a Class of Linear Codes.
IEEE Access, 2019

Quantum codes from cyclic codes over the ring 𝔽<sub>q</sub> + v<sub>1</sub>𝔽<sub>q</sub> + ⋯ + v<sub>r</sub> 𝔽<sub>q</sub>.
Appl. Algebra Eng. Commun. Comput., 2019

2018
Constacyclic codes over the ring (𝔽<sub>q</sub>+v𝔽<sub>q</sub>+v<sup>2</sup>𝔽<sub>q</sub>) and their applications of constructing new non-binary quantum codes.
Quantum Inf. Process., 2018

<i>u</i>-Constacyclic codes over 𝔽<sub>p</sub>+u𝔽<sub>p</sub> and their applications of constructing new non-binary quantum codes.
Quantum Inf. Process., 2018

Bounds on covering radius of linear codes with Chinese Euclidean distance over the finite non chain ring F2+vF2.
Inf. Process. Lett., 2018

Constacyclic codes over the ring F<sub><i>p</i></sub> + <i>v</i>F<sub><i>p</i></sub> and their applications of constructing new non-binary quantum codes.
Int. J. Inf. Coding Theory, 2018

ℤ<sub>p</sub>ℤ<sub>p</sub>[u]-additive cyclic codes.
Int. J. Inf. Coding Theory, 2018

A Kind of Disjoint Cyclic Perfect Mendelsohn Difference Family and Its Applications in Strictly Optimal FHSs.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2018

Two Classes of Linear Codes with Two or Three Weights.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2018

Deterministic Constructions of Compressed Sensing Matrices Based on Affine Singular Linear Space over Finite Fields.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2018

Self-Dual Cyclic Codes over Z<sub>4</sub>[u]/<u<sup>2</sup>-1> and Their Applications of Z<sub>4</sub>-Self-Dual Codes Construction.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2018

A minimum distance bound for 2-dimension <i>λ</i>-quasi-twisted codes over finite fields.
Finite Fields Their Appl., 2018

Quantum codes from (1 - 2v)-constacyclic codes over the ring 픽q + u픽q + v픽q + uv픽q.
Discret. Math. Algorithms Appl., 2018

A class of repeated-root constacyclic codes over 𝔽<sub>p<sup>m</sup></sub>[u]/〈u<sup>e</sup>〉 of Type 2.
CoRR, 2018

ℤ<sub>2</sub>ℤ<sub>2</sub>ℤ<sub>4</sub>-additive cyclic codes.
Adv. Math. Commun., 2018

Constacyclic codes of length np<sup>s</sup> over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
Adv. Math. Commun., 2018

2017
A Class of Optimal One-Coincidence Frequency-Hopping Sequence Sets with Composite Length.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2017

A Class of Left Dihedral Codes Over Rings 𝔽<sub>q</sub>+u𝔽<sub>q</sub>.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2017

Some results on quadratic residue codes over the ring Fp + vFp + v2Fp + v3Fp.
Discret. Math. Algorithms Appl., 2017

1-generator generalized quasi-cyclic codes over ℤ<sub>4</sub>.
Cryptogr. Commun., 2017

Complete weight enumerators of two classes of linear codes.
Cryptogr. Commun., 2017

1-Generator quasi-cyclic and generalized quasi-cyclic codes over the ring ℤ<sub>4</sub>[u]/〈u<sup>2</sup>-1〉.
Appl. Algebra Eng. Commun. Comput., 2017

Some classes of linear codes over ℤ<sub>4</sub>+vℤ<sub>4</sub> and their applications to construct good and new ℤ<sub>4</sub>-linear codes.
Appl. Algebra Eng. Commun. Comput., 2017

2016
On a Class of Left Metacyclic Codes.
IEEE Trans. Inf. Theory, 2016

Construction of one-gray weight codes and two-Gray weight codes over ℤ<sub>4</sub> + <i>u</i>ℤ<sub>4</sub>.
J. Syst. Sci. Complex., 2016

Secret Sharing Schemes from Linear Codes overFp + vFp.
Int. J. Found. Comput. Sci., 2016

A class of 1-generator quasi-cyclic codes over finite chain rings.
Int. J. Comput. Math., 2016

Some Results on Triple Cyclic Codes over Z<sub>4</sub>.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2016

On a Class of (δ+α<i>u</i><sup>2</sup>)-Constacyclic Codes over F<sub><i>q</i></sub>[<i>u</i>]/〈<i>u</i><sup>4</sup>〉.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2016

On double cyclic codes over Z<sub>4</sub>.
Finite Fields Their Appl., 2016

A Chinese remainder theorem approach to skew generalized quasi-cyclic codes over finite fields.
Cryptogr. Commun., 2016

2015
Linear Codes and (1+<i>uv</i>)-Constacyclic Codes over <i>R</i>[<i>v</i>]/(<i>v</i><sup>2</sup>+<i>v</i>).
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2015

Two self-dual codes with larger lengths over ℤ<sub>9</sub>.
Discret. Math. Algorithms Appl., 2015

Some results on cyclic codes over ℤq + uℤq.
Discret. Math. Algorithms Appl., 2015

Enumeration and construction of additive cyclic codes over Galois rings.
Discret. Math., 2015

Semisimple multivariable 𝔽<sub>q</sub>-linear codes over 𝔽<sub>q<sup>l</sup></sub>.
Des. Codes Cryptogr., 2015

On cyclic codes and quasi-cyclic codes over ℤ<sub>q</sub>+uℤ<sub>q</sub>.
CoRR, 2015

Constacyclic codes of length p<sup>s</sup>n over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
CoRR, 2015

On a class of (δ+αu<sup>2</sup>)-constacyclic codes over 𝔽<sub>q</sub>[u]/〈u<sup>4</sup>〉.
CoRR, 2015

2014
Some Results on Generalized Quasi-Cyclic Codes over 𝔽<sub>q</sub>+u𝔽<sub>q</sub>.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2014

Some Results on Linear Codes over ℤ<sub>4</sub>+vℤ<sub>4</sub>.
CoRR, 2014

2013
1-Generator quasi-cyclic codes over Fpm+uFpm+...+us-1Fpm.
J. Frankl. Inst., 2013

Constructing quasi-cyclic codes from linear algebra theory.
Des. Codes Cryptogr., 2013

Quasi-Cyclic Codes Over Finite Chain Rings.
CoRR, 2013

Skew Generalized Quasi-Cyclic Codes over Finite Fields.
CoRR, 2013

One generator $(1+u)$-quasi twisted codes over $F_2+uF_2$.
CoRR, 2013

Generalized Quasi-Cyclic Codes Over 𝔽<sub>q</sub>+u𝔽<sub>q</sub>.
CoRR, 2013


  Loading...