Jean M.-S. Lubuma
Orcid: 0000-0002-1654-9298
According to our database1,
Jean M.-S. Lubuma
authored at least 20 papers
between 2003 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2025
Math. Comput. Simul., 2025
2023
Effects of periodic aerosol emission on the transmission dynamics of Neisseria Meningitis A.
Math. Comput. Simul., 2023
2022
Second-order nonstandard finite difference schemes for a class of models in bioscience.
CoRR, 2022
2021
Prevalence-based modeling approach of schistosomiasis: global stability analysis and integrated control assessment.
Comput. Appl. Math., 2021
2019
Int. J. Comput. Math., 2019
2017
Math. Comput. Simul., 2017
2016
On the Numerical Solution of the Stationary Power-Law Stokes Equations: A Penalty Finite Element Approach.
J. Sci. Comput., 2016
Coupling finite volume and nonstandard finite difference schemes for a singularly perturbed Schrödinger equation.
Int. J. Comput. Math., 2016
2015
Switching from exact scheme to nonstandard finite difference scheme for linear delay differential equation.
Appl. Math. Comput., 2015
2014
Dynamically consistent nonstandard finite difference schemes for epidemiological models.
J. Comput. Appl. Math., 2014
Dynamics of <i>Mycobacterium</i> and <i>bovine tuberculosis</i> in a Human-Buffalo Population.
Comput. Math. Methods Medicine, 2014
Positivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences.
Comput. Math. Appl., 2014
2012
From enzyme kinetics to epidemiological models with Michaelis-Menten contact rate: Design of nonstandard finite difference schemes.
Comput. Math. Appl., 2012
Mathematical modeling of sterile insect technology for control of anopheles mosquito.
Comput. Math. Appl., 2012
2011
Math. Comput. Model., 2011
2010
Total variation diminishing nonstandard finite difference schemes for conservation laws.
Math. Comput. Model., 2010
Appl. Math. Lett., 2010
2009
Towards the implementation of the singular function method for singular perturbation problems.
Appl. Math. Comput., 2009
2007
Non-standard methods for singularly perturbed problems possessing oscillatory/layer solutions.
Appl. Math. Comput., 2007
2003
Math. Comput. Simul., 2003