Je-Min Hung

According to our database1, Je-Min Hung authored at least 9 papers between 2020 and 2023.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
8-b Precision 8-Mb ReRAM Compute-in-Memory Macro Using Direct-Current-Free Time-Domain Readout Scheme for AI Edge Devices.
IEEE J. Solid State Circuits, 2023

A 28nm Nonvolatile AI Edge Processor using 4Mb Analog-Based Near-Memory-Compute ReRAM with 27.2 TOPS/W for Tiny AI Edge Devices.
Proceedings of the 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2023

A Nonvolatile Al-Edge Processor with 4MB SLC-MLC Hybrid-Mode ReRAM Compute-in-Memory Macro and 51.4-251TOPS/W.
Proceedings of the IEEE International Solid- State Circuits Conference, 2023

2022
A 22-nm 1-Mb 1024-b Read Data-Protected STT-MRAM Macro With Near-Memory Shift-and-Rotate Functionality and 42.6-GB/s Read Bandwidth for Security-Aware Mobile Device.
IEEE J. Solid State Circuits, 2022

An 8-Mb DC-Current-Free Binary-to-8b Precision ReRAM Nonvolatile Computing-in-Memory Macro using Time-Space-Readout with 1286.4-21.6TOPS/W for Edge-AI Devices.
Proceedings of the IEEE International Solid-State Circuits Conference, 2022

2021
Challenges and Trends of SRAM-Based Computing-In-Memory for AI Edge Devices.
IEEE Trans. Circuits Syst. I Regul. Pap., 2021

A 22nm 4Mb 8b-Precision ReRAM Computing-in-Memory Macro with 11.91 to 195.7TOPS/W for Tiny AI Edge Devices.
Proceedings of the IEEE International Solid-State Circuits Conference, 2021

2020
A 4-Kb 1-to-8-bit Configurable 6T SRAM-Based Computation-in-Memory Unit-Macro for CNN-Based AI Edge Processors.
IEEE J. Solid State Circuits, 2020

13.4 A 22nm 1Mb 1024b-Read and Near-Memory-Computing Dual-Mode STT-MRAM Macro with 42.6GB/s Read Bandwidth for Security-Aware Mobile Devices.
Proceedings of the 2020 IEEE International Solid- State Circuits Conference, 2020


  Loading...