Jason D. Mireles-James

Orcid: 0000-0001-8449-9408

Affiliations:
  • Florida Atlantic University, Boca Raton, Florida, USA


According to our database1, Jason D. Mireles-James authored at least 26 papers between 2010 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Weighted Birkhoff Averages and the Parameterization Method.
SIAM J. Appl. Dyn. Syst., 2024

Computer assisted proofs for transverse heteroclinics by the parameterization method.
CoRR, 2024

2023
Numerical Computation of Transverse Homoclinic Orbits for Periodic Solutions of Delay Differential Equations.
SIAM J. Appl. Dyn. Syst., December, 2023

Persistence of Periodic Orbits under State-dependent Delayed Perturbations: Computer-assisted Proofs.
SIAM J. Appl. Dyn. Syst., September, 2023

Computer assisted proofs in dynamical systems.
Commun. Nonlinear Sci. Numer. Simul., April, 2023

2022
Computer assisted proof of drift orbits along normally hyperbolic manifolds.
Commun. Nonlinear Sci. Numer. Simul., 2022

2020
Parameterization Method for Unstable Manifolds of Standing Waves on the Line.
SIAM J. Appl. Dyn. Syst., 2020

Resonant tori, transport barriers, and chaos in a vector field with a Neimark-Sacker bifurcation.
Commun. Nonlinear Sci. Numer. Simul., 2020

2018
Analytic Continuation of Local (Un)Stable Manifolds with Rigorous Computer Assisted Error Bounds.
SIAM J. Appl. Dyn. Syst., 2018

2017
Computer Assisted Fourier Analysis in Sequence Spaces of Varying Regularity.
SIAM J. Math. Anal., 2017

High-Order Parameterization of Stable/Unstable Manifolds for Long Periodic Orbits of Maps.
SIAM J. Appl. Dyn. Syst., 2017

Validated Computation of Heteroclinic Sets.
SIAM J. Appl. Dyn. Syst., 2017

Chebyshev-Taylor Parameterization of Stable/Unstable Manifolds for Periodic Orbits: Implementation and Applications.
Int. J. Bifurc. Chaos, 2017

Fourier-Taylor Approximation of Unstable Manifolds for Compact Maps: Numerical Implementation and Computer-Assisted Error Bounds.
Found. Comput. Math., 2017

High-order parameterization of (un)stable manifolds for hybrid maps: Implementation and applications.
Commun. Nonlinear Sci. Numer. Simul., 2017

2016
Connecting Orbits for Compact Infinite Dimensional Maps: Computer Assisted Proofs of Existence.
SIAM J. Appl. Dyn. Syst., 2016

Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach.
Math. Comput., 2016

Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra.
J. Nonlinear Sci., 2016

2015
Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form.
SIAM J. Appl. Dyn. Syst., 2015

Stationary Coexistence of Hexagons and Rolls via Rigorous Computations.
SIAM J. Appl. Dyn. Syst., 2015

Computer assisted error bounds for linear approximation of (un)stable manifolds and rigorous validation of higher dimensional transverse connecting orbits.
Commun. Nonlinear Sci. Numer. Simul., 2015

2013
Rigorous A Posteriori Computation of (Un)Stable Manifolds and Connecting Orbits for Analytic Maps.
SIAM J. Appl. Dyn. Syst., 2013

Quadratic Volume-Preserving Maps: (Un)stable Manifolds, Hyperbolic Dynamics, and Vortex-Bubble Bifurcations.
J. Nonlinear Sci., 2013

2011
Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation.
SIAM J. Math. Anal., 2011

2010
Computation of Heteroclinic Arcs with Application to the Volume Preserving Hénon Family.
SIAM J. Appl. Dyn. Syst., 2010

Adaptive Set-Oriented Computation of Topological Horseshoe Factors in Area and Volume Preserving Maps.
SIAM J. Appl. Dyn. Syst., 2010


  Loading...