Jason D. Mireles-James
Orcid: 0000-0001-8449-9408Affiliations:
- Florida Atlantic University, Boca Raton, Florida, USA
According to our database1,
Jason D. Mireles-James
authored at least 26 papers
between 2010 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
SIAM J. Appl. Dyn. Syst., 2024
Computer assisted proofs for transverse heteroclinics by the parameterization method.
CoRR, 2024
2023
Numerical Computation of Transverse Homoclinic Orbits for Periodic Solutions of Delay Differential Equations.
SIAM J. Appl. Dyn. Syst., December, 2023
Persistence of Periodic Orbits under State-dependent Delayed Perturbations: Computer-assisted Proofs.
SIAM J. Appl. Dyn. Syst., September, 2023
Commun. Nonlinear Sci. Numer. Simul., April, 2023
2022
Commun. Nonlinear Sci. Numer. Simul., 2022
2020
SIAM J. Appl. Dyn. Syst., 2020
Resonant tori, transport barriers, and chaos in a vector field with a Neimark-Sacker bifurcation.
Commun. Nonlinear Sci. Numer. Simul., 2020
2018
Analytic Continuation of Local (Un)Stable Manifolds with Rigorous Computer Assisted Error Bounds.
SIAM J. Appl. Dyn. Syst., 2018
2017
SIAM J. Math. Anal., 2017
High-Order Parameterization of Stable/Unstable Manifolds for Long Periodic Orbits of Maps.
SIAM J. Appl. Dyn. Syst., 2017
Chebyshev-Taylor Parameterization of Stable/Unstable Manifolds for Periodic Orbits: Implementation and Applications.
Int. J. Bifurc. Chaos, 2017
Fourier-Taylor Approximation of Unstable Manifolds for Compact Maps: Numerical Implementation and Computer-Assisted Error Bounds.
Found. Comput. Math., 2017
High-order parameterization of (un)stable manifolds for hybrid maps: Implementation and applications.
Commun. Nonlinear Sci. Numer. Simul., 2017
2016
Connecting Orbits for Compact Infinite Dimensional Maps: Computer Assisted Proofs of Existence.
SIAM J. Appl. Dyn. Syst., 2016
Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach.
Math. Comput., 2016
Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra.
J. Nonlinear Sci., 2016
2015
Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form.
SIAM J. Appl. Dyn. Syst., 2015
SIAM J. Appl. Dyn. Syst., 2015
Computer assisted error bounds for linear approximation of (un)stable manifolds and rigorous validation of higher dimensional transverse connecting orbits.
Commun. Nonlinear Sci. Numer. Simul., 2015
2013
Rigorous A Posteriori Computation of (Un)Stable Manifolds and Connecting Orbits for Analytic Maps.
SIAM J. Appl. Dyn. Syst., 2013
Quadratic Volume-Preserving Maps: (Un)stable Manifolds, Hyperbolic Dynamics, and Vortex-Bubble Bifurcations.
J. Nonlinear Sci., 2013
2011
Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation.
SIAM J. Math. Anal., 2011
2010
Computation of Heteroclinic Arcs with Application to the Volume Preserving Hénon Family.
SIAM J. Appl. Dyn. Syst., 2010
Adaptive Set-Oriented Computation of Topological Horseshoe Factors in Area and Volume Preserving Maps.
SIAM J. Appl. Dyn. Syst., 2010