Jan De Beule
Orcid: 0000-0001-5333-5224Affiliations:
- Vrije Universiteit Brussel, Brussels, Belgium
According to our database1,
Jan De Beule
authored at least 36 papers
between 2003 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on zbmath.org
-
on orcid.org
On csauthors.net:
Bibliography
2024
Eur. J. Comb., 2024
2023
2022
J. Comb. Theory A, 2022
A modular equality for Cameron-Liebler line classes in projective and affine spaces of odd dimension.
Finite Fields Their Appl., 2022
Des. Codes Cryptogr., 2022
2019
2018
2017
Electron. J. Comb., 2017
Proceedings of the International Workshop on Parallel Symbolic Computation, 2017
2016
2014
Des. Codes Cryptogr., 2014
2013
J. Comb. Theory A, 2013
Des. Codes Cryptogr., 2013
2012
Des. Codes Cryptogr., 2012
On sets of vectors of a finite vector space in which every subset of basis size is a basis II.
Des. Codes Cryptogr., 2012
2010
2009
Des. Codes Cryptogr., 2009
2008
Eur. J. Comb., 2008
Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound.
Des. Codes Cryptogr., 2008
Des. Codes Cryptogr., 2008
Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound.
Adv. Math. Commun., 2008
2007
J. Comb. Theory A, 2007
Characterization results on small blocking sets of the polar spaces <i>Q</i> <sup>+</sup>(2 <i>n</i> + 1, 2) and <i>Q</i> <sup>+</sup>(2 <i>n</i> + 1, 3).
Des. Codes Cryptogr., 2007
2006
2005
Minimal blocking sets of size q<sup>2</sup>+2 of Q(4, q), q an odd prime, do not exist.
Finite Fields Their Appl., 2005
On the smallest minimal blocking sets of <i>Q</i>(2<i>n, q</i>), for <i>q</i> an odd prime.
Discret. Math., 2005
The smallest point sets that meet all generators of <i>H</i>(2<i>n, q</i><sup>2</sup>).
Discret. Math., 2005
2004
J. Comb. Theory A, 2004
SIGSAM Bull., 2004
2003