Jan De Beule

Orcid: 0000-0001-5333-5224

Affiliations:
  • Vrije Universiteit Brussel, Brussels, Belgium


According to our database1, Jan De Beule authored at least 36 papers between 2003 and 2024.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
On m-ovoids of Q+(7,q) with q odd.
Finite Fields Their Appl., 2024

Some non-existence results on m-ovoids in classical polar spaces.
Eur. J. Comb., 2024

2023
Degree 2 Boolean Functions on Grassmann Graphs.
Electron. J. Comb., 2023

2022
An algebraic approach to Erdős-Ko-Rado sets of flags in spherical buildings.
J. Comb. Theory A, 2022

A modular equality for Cameron-Liebler line classes in projective and affine spaces of odd dimension.
Finite Fields Their Appl., 2022

Cameron-Liebler k-sets in subspaces and non-existence conditions.
Des. Codes Cryptogr., 2022

2019
The minimum size of a linear set.
J. Comb. Theory A, 2019

On the cylinder conjecture.
Des. Codes Cryptogr., 2019

2018
A combinatorial characterisation of embedded polar spaces.
Discret. Math., 2018

2017
On Subsets of the Normal Rational Curve.
IEEE Trans. Inf. Theory, 2017

On the Smallest Non-Trivial Tight Sets in Hermitian Polar Spaces.
Electron. J. Comb., 2017

Towards Generic Scalable Parallel Combinatorial Search.
Proceedings of the International Workshop on Parallel Symbolic Computation, 2017

2016
A new family of tight sets in Q<sup>+</sup>(5, q).
Des. Codes Cryptogr., 2016

Blocking and Double Blocking Sets in Finite Planes.
Electron. J. Comb., 2016

2014
Editorial: Special issue on finite geometries in honor of Frank De Clerck.
Des. Codes Cryptogr., 2014

2013
Sets of generators blocking all generators in finite classical polar spaces.
J. Comb. Theory A, 2013

On large maximal partial ovoids of the parabolic quadric Q(4, q).
Des. Codes Cryptogr., 2013

2012
A characterisation result on a particular class of non-weighted minihypers.
Des. Codes Cryptogr., 2012

On sets of vectors of a finite vector space in which every subset of basis size is a basis II.
Des. Codes Cryptogr., 2012

2010
Galois geometries and applications.
Des. Codes Cryptogr., 2010

In memoriam, András Gács.
Des. Codes Cryptogr., 2010

2009
Tight sets, weighted <i>m</i> -covers, weighted <i>m</i> -ovoids, and minihypers.
Des. Codes Cryptogr., 2009

2008
Complete arcs on the parabolic quadric Q(4, q).
Finite Fields Their Appl., 2008

Partial ovoids and partial spreads in symplectic and orthogonal polar spaces.
Eur. J. Comb., 2008

Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound.
Des. Codes Cryptogr., 2008

Partial ovoids and partial spreads in hermitian polar spaces.
Des. Codes Cryptogr., 2008

Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound.
Adv. Math. Commun., 2008

2007
The maximum size of a partial spread in H(5, q<sup>2</sup>) is q<sup>3</sup>+1.
J. Comb. Theory A, 2007

Characterization results on small blocking sets of the polar spaces <i>Q</i> <sup>+</sup>(2 <i>n</i> + 1, 2) and <i>Q</i> <sup>+</sup>(2 <i>n</i> + 1, 3).
Des. Codes Cryptogr., 2007

2006
Blocking All Generators of Q+(2n + 1, 3), n ≥ 4.
Des. Codes Cryptogr., 2006

2005
Minimal blocking sets of size q<sup>2</sup>+2 of Q(4, q), q an odd prime, do not exist.
Finite Fields Their Appl., 2005

On the smallest minimal blocking sets of <i>Q</i>(2<i>n, q</i>), for <i>q</i> an odd prime.
Discret. Math., 2005

The smallest point sets that meet all generators of <i>H</i>(2<i>n, q</i><sup>2</sup>).
Discret. Math., 2005

2004
Small point sets that meet all generators of Q(2n, p), p>3 prime.
J. Comb. Theory A, 2004

On the size of minimal blocking sets of Q(4; <i>q</i>), for <i>q</i> = 5, 7.
SIGSAM Bull., 2004

2003
Maximal partial spreads of T<sub>2</sub>(O) and T<sub>3</sub>.
Eur. J. Comb., 2003


  Loading...