Jack H. Koolen
Orcid: 0000-0002-8623-5681
According to our database1,
Jack H. Koolen
authored at least 136 papers
between 1990 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on zbmath.org
-
on orcid.org
On csauthors.net:
Bibliography
2025
Bounding the intersection number c2 of a distance-regular graph with classical parameters (D,b,α,β) in terms of b.
Discret. Math., 2025
2024
Electron. J. Comb., 2024
2023
Graphs Comb., February, 2023
J. Comb. Theory A, 2023
2022
Graphs Comb., 2022
The 2-partially distance-regular graphs such that their second largest local eigenvalues are at most one.
Discret. Math., 2022
There Does Not Exist a Strongly Regular Graph with Parameters $(1911, 270, 105, 27)$.
Electron. J. Comb., 2022
2021
Connectivity concerning the last two subconstituents of a <i>Q</i>-polynomial distance-regular graph.
J. Comb. Theory A, 2021
Preface to the special issue dedicated to Professors Eiichi Bannai and Hikoe Enomoto on their 75th birthdays.
Graphs Comb., 2021
Graphs Comb., 2021
Addressing Johnson Graphs, Complete Multipartite Graphs, Odd Cycles, and Random Graphs.
Exp. Math., 2021
Augmenting the Delsarte bound: A forbidden interval for the order of maximal cliques in strongly regular graphs.
Eur. J. Comb., 2021
Thin Distance-Regular Graphs with Classical Parameters $(D, q, q, \frac{q^{t}-1}{q-1}-1)$ with $t> D$ are the Grassmann Graphs.
Electron. J. Comb., 2021
2020
A spectral characterization of the <i>s</i>-clique extension of the triangular graphs.
Discuss. Math. Graph Theory, 2020
2019
There Does Not Exist a Distance-Regular Graph with Intersection Array {80, 54, 12; 1, 6, 60}.
Graphs Comb., 2019
Eur. J. Comb., 2019
Discret. Math., 2019
Discret. Math., 2019
Electron. J. Comb., 2019
Comb., 2019
2018
J. Comb. Theory B, 2018
J. Comb. Theory B, 2018
Addressing Johnson graphs, complete multipartite graphs, odd cycles and other graphs.
CoRR, 2018
Art Discret. Appl. Math., 2018
2017
Eur. J. Comb., 2017
Des. Codes Cryptogr., 2017
Electron. J. Comb., 2017
2016
SIAM J. Discret. Math., 2016
A collection of results concerning electric resistance and simple random walk on distance-regular graphs.
Discret. Math., 2016
Australas. J Comb., 2016
2015
Discret. Math., 2015
2014
2013
There are only finitely many distance-regular graphs with valency k at least three, fixed ratio k<sub>2</sub>/k and large diameter.
J. Comb. Theory B, 2013
A note on distance-regular graphs with a small number of vertices compared to the valency.
Eur. J. Comb., 2013
Electron. J. Comb., 2013
2012
Distance-regular graphs with a<sub>2</sub> or c<sub>2</sub> at least half the valency.
J. Comb. Theory A, 2012
J. Comb. Theory A, 2012
A relationship between the diameter and the intersection number c 2 for a distance-regular graph.
Des. Codes Cryptogr., 2012
Cambridge University Press, ISBN: 978-0-521-76832-0, 2012
2011
J. Comb. Theory A, 2011
CoRR, 2011
2010
J. Comb. Theory B, 2010
Eur. J. Comb., 2010
Electron. J. Comb., 2010
Electron. J. Comb., 2010
2009
2008
Triangle-free distance-regular graphs with an eigenvalue multiplicity equal to their valency and diameter 3.
Eur. J. Comb., 2008
Eur. J. Comb., 2008
On triangle-free distance-regular graphs with an eigenvalue multiplicity equal to the valency.
Eur. J. Comb., 2008
Eur. J. Comb., 2008
Block realizations of finite metrics and the tight-span construction I: The embedding theorem.
Appl. Math. Lett., 2008
2007
Discret. Comput. Geom., 2007
Proceedings of the Combinatorial Optimization and Applications, 2007
2006
J. Comb. Theory A, 2006
Eur. J. Comb., 2006
2005
Triangle- and pentagon-free distance-regular graphs with an eigenvalue multiplicity equal to the valency.
J. Comb. Theory B, 2005
Discret. Math., 2005
Des. Codes Cryptogr., 2005
Delta additive and Delta ultra-additive maps, Gromov's trees, and the Farris transform.
Discret. Appl. Math., 2005
2004
Discret. Comput. Geom., 2004
2003
J. Comb. Theory A, 2003
Addendum to "on line arrangements in the hyperbolic plane" [European J. Combin.23 (2002) 549-557].
Eur. J. Comb., 2003
A bound for the number of columns l<sub>(c, a, b)</sub> in the intersection array of a distance-regular graph.
Eur. J. Comb., 2003
Discret. Math., 2003
2002
On a Conjecture of Bannai and Ito: There are Finitely Many Distance-regular Graphs with Degree 5, 6 or 7.
Eur. J. Comb., 2002
Discret. Math., 2002
2001
2000
Eur. J. Comb., 2000
Equilateral Dimension of the Rectilinear Space.
Des. Codes Cryptogr., 2000
A Local Approach to 1-Homogeneous Graphs.
Des. Codes Cryptogr., 2000
1999
1998
The Distance-regular Graphs with Intersection Number a<sub>1</sub>!=0 and with an Eigenvalue -1-(b<sub>1</sub>/2).
Comb., 1998
1995
1994
Distance-regular Graphs the Distance Matrix of which has Only One Positive Eigenvalue.
Eur. J. Comb., 1994
1993
Discret. Math., 1993
1992
1990