Ignat Domanov

Orcid: 0000-0001-7605-4177

According to our database1, Ignat Domanov authored at least 16 papers between 2011 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Decomposition of a Tensor into Multilinear Rank-\({(M_{{r}},N_{{r}},\cdot )}\) Terms.
SIAM J. Matrix Anal. Appl., 2024

2023
Uniqueness Result and Algebraic Algorithm for Decomposition into Multilinear Rank- $(M_{r}, N_{r}, \cdot)$ Terms and Joint Block Diagonalization.
Proceedings of the 9th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2023

2021
Systems of Polynomial Equations, Higher-Order Tensor Decompositions, and Multidimensional Harmonic Retrieval: A Unifying Framework. Part II: The Block Term Decomposition.
SIAM J. Matrix Anal. Appl., 2021

From Computation to Comparison of Tensor Decompositions.
SIAM J. Matrix Anal. Appl., 2021

2020
On Uniqueness and Computation of the Decomposition of a Tensor into Multilinear Rank-(1, L<sub>r, L<sub>r)</sub></sub> Terms.
SIAM J. Matrix Anal. Appl., 2020

2018
Coupled Canonical Polyadic Decompositions and Multiple Shift Invariance in Array Processing.
IEEE Trans. Signal Process., 2018

Linear systems with a canonical polyadic decomposition constrained solution: Algorithms and applications.
Numer. Linear Algebra Appl., 2018

2017
On the Largest Multilinear Singular Values of Higher-Order Tensors.
SIAM J. Matrix Anal. Appl., 2017

2016
Generic Uniqueness of a Structured Matrix Factorization and Applications in Blind Source Separation.
IEEE J. Sel. Top. Signal Process., 2016

Exact line and plane search for tensor optimization.
Comput. Optim. Appl., 2016

2015
Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank- (L<sub>r, n</sub>, L<sub>r, n</sub>, 1) Terms - Part II: Algorithms.
SIAM J. Matrix Anal. Appl., 2015

Generic Uniqueness Conditions for the Canonical Polyadic Decomposition and INDSCAL.
SIAM J. Matrix Anal. Appl., 2015

2014
Canonical Polyadic Decomposition of Third-Order Tensors: Reduction to Generalized Eigenvalue Decomposition.
SIAM J. Matrix Anal. Appl., 2014

2013
On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition.
SIAM J. Matrix Anal. Appl., 2013

On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix.
SIAM J. Matrix Anal. Appl., 2013

2011
Blind channel identification of MISO systems based on the CP decomposition of cumulant tensors.
Proceedings of the 19th European Signal Processing Conference, 2011


  Loading...