Ibrahim Yalçinkaya

According to our database1, Ibrahim Yalçinkaya authored at least 7 papers between 2008 and 2023.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
On the dynamics of a higher-order fuzzy difference equation with rational terms.
Soft Comput., August, 2023

2011
On the behavior of positive solutions of the system of rational difference equations x<sub>n+1</sub> = x<sub>n-1</sub>/(y<sub>n</sub>x<sub>n-1</sub>+1), y<sub>n+1</sub> = y<sub>n-1</sub>/(x<sub>n</sub>y<sub>n-1</sub>+1).
Math. Comput. Model., 2011

On the dynamics of the recursive sequence x<sub>n-1</sub> = αx<sub>n-1</sub> / β + γΣ<sup>l</sup><sub>k=1</sub>x<sub>n-2k</sub>Π<sup>l</sup><sub>k=1</sub>x<sub>n-2k</sub>.
Math. Comput. Model., 2011

On the dynamics of the recursive sequence x<sub>n+1</sub> = (x<sub>n-1</sub> / β+γx<sup>2</sup><sub>n-2</sub>x<sub>n-4</sub>+γx<sub>n-2</sub>x<sup>2</sup><sub>n-4</sub>).
Comput. Math. Appl., 2011

2010
On The Global Asymptotic Behavior Of A System Of Two Nonlinear Difference Equations.
Ars Comb., 2010

The Dynamics Of The Difference Equation x<sub>n+1</sub>={α x<sub>n-k</sub>}/{β +γ x<sup>p_{n-(k+1)}</sup>.
Ars Comb., 2010

2008
On the asymptotic stability of x<sub>n+1</sub>=(a+x<sub>n</sub>x<sub>n-k</sub>)/(x<sub>n</sub>+x<sub>n-k</sub>).
Comput. Math. Appl., 2008


  Loading...