Hyun Geun Lee
Orcid: 0000-0001-5135-195X
According to our database1,
Hyun Geun Lee
authored at least 25 papers
between 2010 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
A linear second-order convex splitting scheme for the modified phase-field crystal equation with a strong nonlinear vacancy potential.
Appl. Math. Lett., 2024
2022
A High-Order and Unconditionally Energy Stable Scheme for the Conservative Allen-Cahn Equation with a Nonlocal Lagrange Multiplier.
J. Sci. Comput., 2022
J. Sci. Comput., 2022
Energy quadratization Runge-Kutta scheme for the conservative Allen-Cahn equation with a nonlocal Lagrange multiplier.
Appl. Math. Lett., 2022
A non-iterative and unconditionally energy stable method for the Swift-Hohenberg equation with quadratic-cubic nonlinearity.
Appl. Math. Lett., 2022
2021
Modeling and simulation of droplet evaporation using a modified Cahn-Hilliard equation.
Appl. Math. Comput., 2021
2020
J. Comput. Appl. Math., 2020
Commun. Nonlinear Sci. Numer. Simul., 2020
2019
Numerical Simulation of Pattern Formation on Surfaces Using an Efficient Linear Second-Order Method.
Symmetry, 2019
2018
A second-order operator splitting Fourier spectral method for fractional-in-space reaction-diffusion equations.
J. Comput. Appl. Math., 2018
2017
A Second-Order Operator Splitting Fourier Spectral Method for Models of Epitaxial Thin Film Growth.
J. Sci. Comput., 2017
Unconditionally stable methods for gradient flow using Convex Splitting Runge-Kutta scheme.
J. Comput. Phys., 2017
Comput. Phys. Commun., 2017
Comput. Math. Appl., 2017
Comput. Math. Appl., 2017
2016
First and second order numerical methods based on a new convex splitting for phase-field crystal equation.
J. Comput. Phys., 2016
A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation.
Comput. Phys. Commun., 2016
Comput. Math. Appl., 2016
2015
First and second order operator splitting methods for the phase field crystal equation.
J. Comput. Phys., 2015
2014
Commun. Nonlinear Sci. Numer. Simul., 2014
Comput. Math. Appl., 2014
2013
Comput. Math. Appl., 2013
2012
An efficient and accurate numerical algorithm for the vector-valued Allen-Cahn equations.
Comput. Phys. Commun., 2012
2010
A phase-field approach for minimizing the area of triply periodic surfaces with volume constraint.
Comput. Phys. Commun., 2010
An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation.
Comput. Math. Appl., 2010