Huadong Gao
Orcid: 0000-0002-3293-8226
According to our database1,
Huadong Gao
authored at least 26 papers
between 2014 and 2023.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2023
A Finite Element Method for the Dynamical Ginzburg-Landau Equations under Coulomb Gauge.
J. Sci. Comput., October, 2023
IEEE Commun. Lett., August, 2023
Outage Performance Analysis of Improper Gaussian Signaling for Two-User Downlink NOMA Systems with Imperfect Successive Interference Cancellation.
Entropy, August, 2023
Optimal Analysis of Non-Uniform Galerkin-Mixed Finite Element Approximations to the Ginzburg-Landau Equations in Superconductivity.
SIAM J. Numer. Anal., April, 2023
Numerische Mathematik, March, 2023
A new error analysis and post-processing technique of the lowest-order Raviart-Thomas mixed finite element method for parabolic problems.
Comput. Math. Appl., March, 2023
2022
The 3D reconstruction of a digital model for irregular gangue blocks and its application in PFC numerical simulation.
Eng. Comput., 2022
Appl. Math. Lett., 2022
2021
Optimal Error Analysis of Euler and Crank-Nicolson Projection Finite Difference Schemes for Landau-Lifshitz Equation.
SIAM J. Numer. Anal., 2021
The Pointwise Stabilities of Piecewise Linear Finite Element Method on Non-obtuse Tetrahedral Meshes of Nonconvex Polyhedra.
J. Sci. Comput., 2021
2020
A space-time adaptive finite element method with exponential time integrator for the phase field model of pitting corrosion.
J. Comput. Phys., 2020
An efficient second-order linear scheme for the phase field model of corrosive dissolution.
J. Comput. Appl. Math., 2020
2019
A Stabilized Semi-Implicit Euler Gauge-Invariant Method for the Time-Dependent Ginzburg-Landau Equations.
J. Sci. Comput., 2019
2018
Correction to: A Linearized Local Conservative Mixed Finite Element Method for Poisson-Nernst-Planck Equations.
J. Sci. Comput., 2018
A Linearized Local Conservative Mixed Finite Element Method for Poisson-Nernst-Planck Equations.
J. Sci. Comput., 2018
J. Sci. Comput., 2018
Analysis of linearized Galerkin-mixed FEMs for the time-dependent Ginzburg-Landau equations of superconductivity.
Adv. Comput. Math., 2018
2017
Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon.
Numerische Mathematik, 2017
Linearized Conservative Finite Element Methods for the Nernst-Planck-Poisson Equations.
J. Sci. Comput., 2017
2016
A New Mixed Formulation and Efficient Numerical Solution of Ginzburg-Landau Equations Under the Temporal Gauge.
SIAM J. Sci. Comput., 2016
Unconditional Optimal Error Estimates of BDF-Galerkin FEMs for Nonlinear Thermistor Equations.
J. Sci. Comput., 2016
2015
An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity.
J. Comput. Phys., 2015
2014
Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations.
SIAM J. Numer. Anal., 2014
Optimal Error Estimates of Linearized Crank-Nicolson Galerkin FEMs for the Time-Dependent Ginzburg-Landau Equations in Superconductivity.
SIAM J. Numer. Anal., 2014
Optimal Error Estimates of a Linearized Backward Euler FEM for the Landau-Lifshitz Equation.
SIAM J. Numer. Anal., 2014
J. Sci. Comput., 2014