Hu Chen

Orcid: 0000-0003-3297-2747

Affiliations:
  • Ocean University of China, School of Mathematical Sciences, Qingdao, China
  • Beijing Computational Science Research Center, Applied and Computational Mathematics Division, China


According to our database1, Hu Chen authored at least 37 papers between 2016 and 2025.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2025
Pointwise-in-time error analysis of the corrected L1 scheme for a time-fractional sine-Gordon equation.
Commun. Nonlinear Sci. Numer. Simul., 2025

A fully discrete GL-ADI scheme for 2D time-fractional reaction-subdiffusion equation.
Appl. Math. Comput., 2025

2024
Local error estimate of L1 scheme on graded mesh for time fractional Schrödinger equation.
J. Appl. Math. Comput., August, 2024

Local convergence analysis of L1-ADI scheme for two-dimensional reaction-subdiffusion equation.
J. Appl. Math. Comput., June, 2024

Effective numerical simulation of time fractional KdV equation with weakly singular solutions.
Int. J. Model. Simul. Sci. Comput., June, 2024

Error estimate of a fully decoupled numerical scheme based on the Scalar Auxiliary Variable (SAV) method for the Boussinesq system.
Commun. Nonlinear Sci. Numer. Simul., 2024

Grünwald-Letnikov scheme for a multi-term time fractional reaction-subdiffusion equation.
Commun. Nonlinear Sci. Numer. Simul., 2024

A-priori and a-posteriori error estimates for discontinuous Galerkin method of the Maxwell eigenvalue problem.
Comput. Math. Appl., 2024

Efficient finite difference/spectral approximation for the time-fractional diffusion equation with an inverse square potential on the unit ball.
Comput. Math. Appl., 2024

Efficient L1-ADI finite difference method for the two-dimensional nonlinear time-fractional diffusion equation.
Appl. Math. Comput., 2024

2023
α-Robust Error Analysis of Two Nonuniform Schemes for Subdiffusion Equations with Variable-Order Derivatives.
J. Sci. Comput., November, 2023

Discrete comparison principle of a finite difference method for the multi-term time fractional diffusion equation.
Numer. Algorithms, August, 2023

Superconvergence analysis of finite element methods for the variable-order subdiffusion equation with weakly singular solutions.
Appl. Math. Lett., May, 2023

Optimal pointwise-in-time error analysis of a mixed finite element method for a multi-term time-fractional fourth-order equation.
Comput. Math. Appl., April, 2023

Pointwise-in-time error estimate of an ADI scheme for two-dimensional multi-term subdiffusion equation.
J. Appl. Math. Comput., February, 2023

Error analysis of a finite difference method for the distributed order sub-diffusion equation using discrete comparison principle.
Math. Comput. Simul., 2023

2022
Sharp error estimate of a Grünwald-Letnikov scheme for reaction-subdiffusion equations.
Numer. Algorithms, 2022

β-Robust Superconvergent Analysis of a Finite Element Method for the Distributed Order Time-Fractional Diffusion Equation.
J. Sci. Comput., 2022

Using Complete Monotonicity to Deduce Local Error Estimates for Discretisations of a Multi-Term Time-Fractional Diffusion Equation.
Comput. Methods Appl. Math., 2022

α-robust H1-norm error estimate of nonuniform Alikhanov scheme for fractional sub-diffusion equation.
Appl. Math. Lett., 2022

Sharp error estimate of Grünwald-Letnikov scheme for a multi-term time fractional diffusion equation.
Adv. Comput. Math., 2022

2021
An α-robust finite element method for a multi-term time-fractional diffusion problem.
J. Comput. Appl. Math., 2021

Pointwise error estimate of an alternating direction implicit difference scheme for two-dimensional time-fractional diffusion equation.
Comput. Math. Appl., 2021

Convergence analysis of the anisotropic FEM for 2D time fractional variable coefficient diffusion equations on graded meshes.
Appl. Math. Lett., 2021

2020
Error analysis of a fully discrete scheme for time fractional Schrödinger equation with initial singularity.
Int. J. Comput. Math., 2020

A discrete comparison principle for the time-fractional diffusion equation.
Comput. Math. Appl., 2020

2019
Error Analysis of a Second-Order Method on Fitted Meshes for a Time-Fractional Diffusion Problem.
J. Sci. Comput., 2019

L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity.
Int. J. Model. Simul. Sci. Comput., 2019

Gauss-Lobatto-Legendre-Birkhoff pseudospectral scheme for the time fractional reaction-diffusion equation with Neumann boundary conditions.
Int. J. Comput. Math., 2019

Finite difference/spectral approximation for a time-space fractional equation on two and three space dimensions.
Comput. Math. Appl., 2019

A numerical method for distributed order time fractional diffusion equation with weakly singular solutions.
Appl. Math. Lett., 2019

2018
A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients.
J. Comput. Appl. Math., 2018

A Petrov-Galerkin spectral method for the linearized time fractional KdV equation.
Int. J. Comput. Math., 2018

A High Order Method on Graded Meshes for a Time-Fractional Diffusion Problem.
Proceedings of the Finite Difference Methods. Theory and Applications, 2018

2016
Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain.
J. Comput. Phys., 2016

Spectral and pseudospectral approximations for the time fractional diffusion equation on an unbounded domain.
J. Comput. Appl. Math., 2016

Spectral methods for the time fractional diffusion-wave equation in a semi-infinite channel.
Comput. Math. Appl., 2016


  Loading...